Do you want to publish a course? Click here

The FLASHForward Facility at DESY

141   0   0.0 ( 0 )
 Added by Brian Foster
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The FLASHForward project at DESY is a pioneering plasma-wakefield acceleration experiment that aims to produce, in a few centimetres of ionised hydrogen, beams with energy of order GeV that are of quality sufficient to be used in a free-electron laser. The plasma wave will be driven by high-current density electron beams from the FLASH linear accelerator and will explore both external and internal witness-beam injection techniques. The plasma is created by ionising a gas in a gas cell with a multi-TW laser system, which can also be used to provide optical diagnostics of the plasma and electron beams due to the <30 fs synchronisation between the laser and the driving electron beam. The operation parameters of the experiment are discussed, as well as the scientific program.

rate research

Read More

Beam-driven plasma-wakefield acceleration based on external injection has the potential to significantly reduce the size of future accelerators. Stability and quality of the acceleration process substantially depends on the incoming bunch parameters. Precise control of the current profile is essential for optimising energy-transfer efficiency and preserving energy spread. At the FLASHForward facility, driver--witness bunch pairs of adjustable bunch length and separation are generated by a set of collimators in a dispersive section, which enables fs-level control of the longitudinal bunch profile. The design of the collimator apparatus and its commissioning is presented.
Due to the potentially adverse effects of the generation of halo particles in intense proton beams, it is imperative to have a clear understanding of the mechanisms that can lead to halo formation for current and proposed high- intensity linacs. To this end a theoretical model has been developed, which indicates that protons under the combined influence of strong space charge forces and periodic focussing in a linear transport channel can be kicked into halo orbits. However, no experimental measurements of beam halo in proton beams have yet been carried out. In this paper we report the progress of an effort to carry out an experiment to measure beam-halo using the existing high- intensity proton beam of the LEDA facility. A linear transport channel has been assembled with the appropriate diagnostics for measuring the expected small beam component in the beam halo as a function of beam parameters. The experiment is based on the use of an array of high-dynamic-range wire and beam scrapers to determine the halo and core profiles along the transport channel. Details of the experimental design, the expected halo measurement properties will be presented.
This paper describes the concept of a primary electron beam facility at CERN, to be used for dark gauge force and light dark matter searches. The electron beam is produced in three stages: A Linac accelerates electrons from a photo-cathode up to 3.5 GeV. This beam is injected into the Super Proton Synchrotron, SPS, and accelerated up to a maximum energy of 16 GeV. Finally, the accelerated beam is slowly extracted to an experiment, possibly followed by a fast dump of the remaining electrons to another beamline. The beam parameters are optimized using the requirements of the Light Dark Matter eXperiment (LDMX) as benchmark.
The FLASHForward experimental facility is a high-performance test-bed for precision plasma-wakefield research, aiming to accelerate high-quality electron beams to GeV-levels in a few centimetres of ionised gas. The plasma is created by ionising gas in a gas cell either by a high-voltage discharge or a high-intensity laser pulse. The electrons to be accelerated will either be injected internally from the plasma background or externally from the FLASH superconducting RF front end. In both cases the wakefield will be driven by electron beams provided by the FLASH gun and linac modules operating with a 10 Hz macro-pulse structure, generating 1.25 GeV, 1 nC electron bunches at up to 3 MHz micro-pulse repetition rates. At full capacity, this FLASH bunch-train structure corresponds to 30 kW of average power, orders of magnitude higher than drivers available to other state-of-the-art LWFA and PWFA experiments. This high-power functionality means FLASHForward is the only plasma-wakefield facility in the world with the immediate capability to develop, explore, and benchmark high-average-power plasma-wakefield research essential for next-generation facilities. The operational parameters and technical highlights of the experiment are discussed, as well as the scientific goals and high-average-power outlook.
In free electron laser facilities, almost every kind of device will generate wakefield when an electron beam passes through it. Most of the wakefields are undesired and have a negative effect on the electron beam, which means a decrease of FEL performance. As for the SXFEL test facility, the sophisticated layout and the cumulative effect of such a long undulator section lead to an obvious wakefield, which is strong enough that can not be ignored. Based on two deflecting cavities at the entrance and the exit of the undulator section with corresponding profile monitors, we measured the wakefield of the undulator section. In this paper, we give the theoretical and simulation results of resistive wall wakefields which agree well with each other. In addition, the experimental and the simulation results of the overall undulator wakefield are given showing small difference. In order to explore the impact of this wakefield on FEL lasing, we give the simulation results of FEL with and without wakefield for comparison. There is almost no impact on 44 nm FEL in stage-1 of cascaded EEHG-HGHG mode, while the impact on 8.8 nm FEL in stage-2 becomes critical decreasing the pulse energy and peak power by 42% and 27% and broadening the bandwidth.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا