Do you want to publish a course? Click here

Counting Curves in Hyperbolic Surfaces

195   0   0.0 ( 0 )
 Added by Viveka Erlandsson
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

Let $Sigma$ be a hyperbolic surface. We study the set of curves on $Sigma$ of a given type, i.e. in the mapping class group orbit of some fixed but otherwise arbitrary $gamma_0$. For example, in the particular case that $Sigma$ is a once-punctured torus, we prove that the cardinality of the set of curves of type $gamma_0$ and of at most length $L$ is asymptotic to $L^2$ times a constant.

rate research

Read More

We prove a quantitative estimate, with a power saving error term, for the number of simple closed geodesics of length at most $L$ on a compact surface equipped with a Riemannian metric of negative curvature. The proof relies on the exponential mixing rate for the Teichm{u}ller geodesic flow.
We show that Mirzakhanis curve counting theorem also holds if we replace surfaces by orbifolds.
In this paper we study the common distance between points and the behavior of a constant length step discrete random walk on finite area hyperbolic surfaces. We show that if the second smallest eigenvalue of the Laplacian is at least 1/4, then the distances on the surface are highly concentrated around the minimal possible value, and that the discrete random walk exhibits cutoff. This extends the results of Lubetzky and Peres ([20]) from the setting of Ramanujan graphs to the setting of hyperbolic surfaces. By utilizing density theorems of exceptional eigenvalues from [27], we are able to show that the results apply to congruence subgroups of $SL_{2}left(mathbb{Z}right)$ and other arithmetic lattices, without relying on the well known conjecture of Selberg ([28]). Conceptually, we show the close relation between the cutoff phenomenon and temperedness of representations of algebraic groups over local fields, partly answering a question of Diaconis ([7]), who asked under what general phenomena cutoff exists.
A negatively curved hyperbolic cone metric is called rigid if it is determined (up to isotopy) by the support of its Liouville current, and flexible otherwise. We provide a complete characterization of rigidity and flexibility, prove that rigidity is a generic property, and parameterize the associated deformation space for any flexible metric. As an application, we parameterize the space of hyperbolic polygons with the same symbolic coding for their billiard dynamics, and prove that generically this parameter space is a point.
This note is about a type of quantitative density of closed geodesics on closed hyperbolic surfaces. The main results are upper bounds on the length of the shortest closed geodesic that $varepsilon$-fills the surface.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا