Do you want to publish a course? Click here

Nonlocal electrodynamics in Weyl semi-metals

94   0   0.0 ( 0 )
 Added by Hsien-Chung Kao
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Recently synthesized 3D materials with Dirac spectrum exhibit peculiar electric transport qualitatively different from its 2D analogue, graphene. Neglecting impuritiy scattering, the real part of the conductivity is strongly frequency dependent (linear), while the imaginary part is non-zero (unlike in undoped, clean graphene). The Coulomb interaction between electrons is unscreened as in a dielectric and hence is long range. We demonstrate that the interaction correction renders the electrodynamics nonlocal on a mesoscopic scale. The longitudinal conductivity $sigma _{L}$ (related by charge conservation to the electric susceptibility) and the transverse conductivity $sigma _{T}$ are different in the long wave length limit and consequently the standard local Ohms law description does not apply. This leads to several remarkable effects in transport and optical response. We predict a charging effect in DC transport that is a direct signature of the nonlocality. The optical response of the WSM is also sensitive to the nonlocality. In these materials p-polarized light generates bulk plasmons as well as the transversal waves. The propagation inside the WSM is only slightly attenuated. At a specific (material parameter dependent) frequency the two modes coincide, a phenomenon impossible in a local medium. Remarkably, for any frequency there is an incident angle where total absorption occurs, turning the WSM opaque.

rate research

Read More

95 - Jinho Yang , Ki-Seok Kim 2021
Axion electrodynamics governs electromagnetic properties of Weyl metals. Although transmission and reflection measurements of light have been proposed to confirm the axion electrodynamics, there are still lack of theoretical proposals for macroscopic nonlocal transport phenomena in Weyl metals. In this paper, we present nonlocal transport phenomena in time reversal symmetry-broken (TRSB) Weyl metals. Solving the axion electrodynamics numerically, we show that such nonlocal transport phenomena arise from the negative longitudinal magneto-resistivity (NLMR), combined with the anomalous Hall effect (AHE) in the axion electrodynamics. Since this nonlocal transport occurs beyond the mesoscopic scale, we conclude that these nonlocal properties have nothing to do with Fermi arcs, regarded to be clear evidence of the axion electrodynamics in the bulk.
In this paper we analyze the effects of nonlocality on the optical properties of a system consisting of a thin metallic film separated from a graphene sheet by a hexagonal boron nitride (hBN) layer. We show that nonlocal effects in the metal have a strong impact on the spectrum of the surface plasmon-polaritons on graphene. If the graphene sheet is shaped into a grating, we show that the extinction curves can be used to shed light on the importance of nonlocal effects in metals. Therefore, graphene surface plasmons emerge as a tool for probing nonlocal effects in metallic nanostructures, including thin metallic films. As a byproduct of our study, we show that nonlocal effects lead to smaller losses for the graphene plasmons than what is predicted by a local calculation. We show that these effects can be very well mimicked using a local theory with an effective spacer thickness larger than its actual value.
56 - Zhe Hou , Qing-Feng Sun 2020
Nonlocality is an interesting topic in quantum physics and is usually mediated by some unique quantum states. Here we investigate a Weyl semimetal slab and find an exotic nonlocal correlation effect when placing two potential wells merely on the top and bottom surfaces. This correlation arises from the peculiar Weyl orbit in Weyl semimetals and is a consequence of the bulk-boundary correspondence in topological band theory. A giant nonlocal transport signal and a body breakdown by Weyl fermions are further uncovered, which can serve as signatures for verifying this nonlocal correlation effect experimentally. Our results extend a new member in the nonlocality family and have potential applications for designing new electric devices with fancy functions.
154 - Rui-Lin Chu , Wen-Yu Shan , Jie Lu 2010
We study the topologically non-trivial semi-metals by means of the 6-band Kane model. Existence of surface states is explicitly demonstrated by calculating the LDOS on the material surface. In the strain free condition, surface states are divided into two parts in the energy spectrum, one part is in the direct gap, the other part including the crossing point of surface state Dirac cone is submerged in the valence band. We also show how uni-axial strain induces an insulating band gap and raises the crossing point from the valence band into the band gap, making the system a true topological insulator. We predict existence of helical edge states and spin Hall effect in the thin film topological semi-metals, which could be tested with future experiment. Disorder is found to significantly enhance the spin Hall effect in the valence band of the thin films.
We uncover two anomalous features in the nonlocal transport behavior of two-dimensional metallic materials with spin-orbit coupling. Firstly, the nonlocal resistance can have negative values and oscillate with distance, even in the absence of a magnetic field. Secondly, the oscillations of the nonlocal resistance under an applied in-plane magnetic field (Hanle effect) can be asymmetric under field reversal. Both features are produced by direct magnetoelectric coupling, which is possible in materials with broken inversion symmetry but was not included in previous spin diffusion theories of nonlocal transport. These effects can be used to identify the relative contributions of different spin-charge conversion mechanisms. They should be observable in adatom-functionalized graphene, and may provide the reason for discrepancies in recent nonlocal transport experiments on graphene.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا