Do you want to publish a course? Click here

A complete census of Herschel-detected infrared sources within the HST Frontier Fields

82   0   0.0 ( 0 )
 Added by Tim Rawle
 Publication date 2015
  fields Physics
and research's language is English
 Authors T. D. Rawle




Ask ChatGPT about the research

We present a complete census of all Herschel-detected sources within the six massive lensing clusters of the HST Frontier Fields (HFF). We provide a robust legacy catalogue of 263 sources with Herschel fluxes, primarily based on imaging from the Herschel Lensing Survey (HLS) and PEP/HerMES Key Programmes. We optimally combine Herschel, Spitzer and WISE infrared (IR) photometry with data from HST, VLA and ground-based observatories, identifying counterparts to gain source redshifts. For each Herschel-detected source we also present magnification factor (mu), intrinsic IR luminosity and characteristic dust temperature, providing a comprehensive view of dust-obscured star formation within the HFF. We demonstrate the utility of our catalogues through an exploratory overview of the magnified population, including more than 20 background sub-LIRGs unreachable by Herschel without the assistance gravitational lensing.



rate research

Read More

146 - G.E. Magdis 2011
Using Herschel PACS and SPIRE observations as part of the HerMES, we explore the far-IR properties of a sample of mid-IR selected starburst dominated ultra-luminous infrared galaxies (ULIRGs) at z ~ 2. We derive robust estimates of infrared luminosities (L_IR) and dust temperatures (Td) of the population and find that galaxies in our sample range from those that are as cold as high-z sub-millimeter galaxies (SMGs) to those that are as warm as optically faint radio galaxies (OFRGs) and local ULIRGs. We also demonstrate that a significant fraction of our sample would be missed from ground based (sub)mm surveys (850-1200{mu}m) showing that the latter introduce a bias towards the detection of colder sources. Similarly, based on PACS data as part of the PEP project, we construct for the first time the full average SED of a sub-sample of infrared luminous Lyman break galaxies at z ~ 3, and find them to have higher T_d when compared to that of SMGs with comparable L_IR. We conclude that high-z ULIRGs span a wide range of dust temperatures, larger than that seen in local ULIRGs, and that Herschel data provide the means to characterize the bulk of the ULIRG population, free from selection biases introduced by ground based (sub)mm surveys.
147 - H. Ebeling , C.-J. Ma , E. Barrett 2014
We present a catalog of 1921 spectroscopic redshifts measured in the fields of the massive galaxy clusters MACSJ0416.1--2403 ($z=0.397$), MACSJ0717.5+3745 ($z=0.546$), and MACSJ1149.5+2223 ($z=0.544$), i.e., three of the four clusters selected by STScI as the targets of the Frontier Fields (FF) initiative for studies of the distant Universe via gravitational lensing. Compiled in the course of the MACS project (Massive Cluster Survey) that detected the FF clusters, this catalog is provided to the community for three purposes: (1) to allow the identification of cluster members for studies of the galaxy population of these extreme systems, (2) to facilitate the removal of unlensed galaxies and thus reduce shear dilution in weak-lensing analyses, and (3) to improve the calibration of photometric redshifts based on both ground- and spacebased observations of the FF clusters.
Using Herschel data from the deepest SPIRE and PACS surveys (HerMES and PEP) in COSMOS and GOODS (N+S), we examine the dust properties of IR-luminous (L_IR>10^10 L_sun) galaxies at 0.1<z<2 and determine how these evolve with cosmic time. The unique angle of this work is the rigorous analysis of survey selection effects, making this the first study of the star-formation-dominated, IR-luminous population within a framework almost entirely free of selection biases. We find that IR-luminous galaxies have SEDs with broad far-IR peaks characterised by cool/extended dust emission and average dust temperatures in the 25-45K range. Hot (T>45K) SEDs and cold (T<25K), cirrus-dominated SEDs are rare, with most sources being within the range occupied by warm starbursts such as M82 and cool spirals such as M51. We observe a luminosity-temperature (L-T) relation, where the average dust temperature of log[L_IR/L_sun]=12.5 galaxies is about 10K higher than that of their log[L_IR/L_sun]=10.5 counterparts. However, although the increased dust heating in more luminous systems is the driving factor behind the L-T relation, the increase in dust mass and/or starburst size with luminosity plays a dominant role in shaping it. Our results show that the dust conditions in IR-luminous sources evolve with cosmic time: at high redshift, dust temperatures are on average up to 10K lower than what is measured locally. This is manifested as a flattening of the L-T relation, suggesting that (U)LIRGs in the early Universe are typically characterised by a more extended dust distribution and/or higher dust masses than local equivalent sources. Interestingly, the evolution in dust temperature is luminosity dependent, with the fraction of LIRGs with T<35K showing a 2-fold increase from z~0 to z~2, whereas that of ULIRGs with T<35K shows a 6-fold increase.
We map the lensing-inferred substructure in the first three clusters observed by the Hubble Space Telescope Frontier Fields Initiative (HSTFF): Abell 2744 (z = 0.308), MACSJ0416, (z = 0.396) and MACSJ1149 (z = 0.543). Statistically resolving dark-matter subhaloes down to ~10^{9.5} solar masses, we compare the derived subhalo mass functions (SHMFs) to theoretical predictions from analytical models and with numerical simulations in a Lambda Cold Dark Matter (LCDM) cosmology. Mimicking our observational cluster member selection criteria in the HSTFF, we report excellent agreement in both amplitude and shape of the SHMF over four decades in subhalo mass (10^{9-13} solar masses). Projection effects do not appear to introduce significant errors in the determination of SHMFs from simulations. We do not find evidence for a substructure crisis, analogous to the missing satellite problem in the Local Group, on cluster scales, but rather excellent agreement of the count-matched HSTFF SHMF down to M_{sub halo}/M_{halo} ~ 10^{-5}. However, we do find discrepancies in the radial distribution of sub haloes inferred from HSTFF cluster lenses compared to determinations from simulated clusters. This suggests that although the selected simulated clusters match the HSTFF sample in mass, they do not adequately capture the dynamical properties and complex merging morphologies of these observed cluster lenses. Therefore, HSTFF clusters are likely observed in a transient evolutionary stage that is presently insufficiently sampled in cosmological simulations. The abundance and mass function of dark matter substructure in cluster lenses continues to offer an important test of the LCDM paradigm, and at present we find no tension between model predictions and observations.
We present the results of a search for mid-infrared signs of star formation activity in the 1.1 mm sources in the Bolocam Galactic Plane Survey (BGPS). We have correlated the BGPS catalog with available mid-IR Galactic plane catalogs based on the Spitzer Space Telescope GLIMPSE legacy survey and the Midcourse Space Experiment (MSX) Galactic plane survey. We find that 44% (3,712 of 8,358) of the BGPS sources contain at least one mid-IR source, including 2,457 of 5,067 (49%) within the area where all surveys overlap (10 deg < l < 65 deg). Accounting for chance alignments between the BGPS and mid-IR sources, we conservatively estimate that 20% of the BPGS sources within the area where all surveys overlap show signs of active star formation. We separate the BGPS sources into four groups based on their probability of star formation activity. Extended Green Objects (EGOs) and Red MSX Sources (RMS) make up the highest probability group, while the lowest probability group is comprised of starless BGPS sources which were not matched to any mid-IR sources. The mean 1.1 mm flux of each group increases with increasing probability of active star formation. We also find that the starless BGPS sources are the most compact, while the sources with the highest probability of star formation activity are on average more extended with large skirts of emission. A subsample of 280 BGPS sources with known distances demonstrates that mass and mean H_2 column density also increase with probability of star formation activity.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا