No Arabic abstract
The feedback from massive stars is important to super star cluster (SSC) evolution and the timescales on which it occurs. SSCs form embedded in thick material, and eventually, the cluster is cleared out and revealed at optical wavelengths -- however, this transition is not well understood. We are investigating this critical SSC evolutionary transition with a multi-wavelength observational campaign. Although previously thought to appear after the cluster has fully removed embedding natal material, we have found that SSCs may host large populations of Wolf-Rayet stars. These evolved stars provide ionization and mechanical feedback that we hypothesize is the tipping point in the combined feedback processes that drive a SSC to emerge. Utilizing optical spectra obtained with the 4m Mayall Telescope at Kitt Peak National Observatory and the 6.5m MMT, we have compiled a sample of embedded SSCs that are likely undergoing this short-lived evolutionary phase and in which we confirm the presence of Wolf-Rayet stars. Early results suggest that WRs may accelerate the cluster emergence.
We investigate the influence of Wolf-Rayet (W-R) stars on their surrounding star-forming molecular clouds. We study five regions containing W-R stars in the inner Galactic plane ($lsim$[14$^circ$-52$^circ$]), using multi-wavelength data from near-infrared to radio wavelengths. Analysis of $^{13}$CO line data reveals that these W-R stars have developed gas-deficient cavities in addition to molecular shells with expansion velocities of a few km s$^{-1}$. The pressure owing to stellar winds primarily drives these expanding shells and sweeps up the surrounding matter to distances of a few pc. The column densities of shells are enhanced by a minimum of 14% for one region to a maximum of 88% for another region with respect to the column densities within their central cavities. No active star formation - including molecular condensations, protostars, or ionized gas - is found inside the cavities, whereas such features are observed around the molecular shells. Although the expansion of ionized gas is considered an effective mechanism to trigger star formation, the dynamical ages of the HII regions in our sample are generally not sufficiently long to do so efficiently. Overall, our results hint at the possible importance of negative W-R wind-driven feedback on the gas-deficient cavities, where star formation is quenched as a consequence. In addition, the presence of active star formation around the molecular shells indicates that W-R stars may also assist in accumulating molecular gas, and that they could initiate star formation around those shells.
In this work I communicate the detection of a new Galactic Wolf-Rayet star (WR60a) in Centaurus. The H- and K-band spectra of WR60a, show strong carbon near-infrared emission lines, characteristic of Wolf-Rayet stars of the WC5-7 sub-type. Adopting mean absolute magnitude M$_K$ and mean intrinsic ($J-K_S$) and ($H-K_S$) colours, it was found that WR60a suffer a mean visual extinction of 3.8$pm$1.3 magnitudes, being located at a probable heliocentric distance of 5.2$pm$0.8 Kpc, which for the related Galactic longitude (l=312) puts this star probably in the Carina-Sagittarius arm at about 5.9 kpc from the Galactic center. I searched for clusters in the vicinity of WR60a, and in principle found no previously known clusters in a search radius region of several tens arc-minutes. The detection of a well isolated WR star induced us to seek for some still unknown cluster, somewhere in the vicinity of WR60a. From inspection of 5.8$mu$m and 8.0$mu$m Spitzer/IRAC GLIMPSE images of the region around the new WR star, it was found strong mid-infrared extended emission at about 13.5 arcmin south-west of WR60a. The study of the the H-K$_S$ colour distribution of point sources associated with the extended emission, reveals the presence of a new Galactic cluster candidate probably formed by at least 85 stars.
Extremely metal-poor, high-ionizing starbursts in the local Universe provide unique laboratories for exploring in detail the physics of high-redshift systems. Also, their ongoing star-formation and haphazard morphology make them outstanding proxies for primordial galaxies. Using integral field spectroscopy, we spatially resolved the ISM properties and massive stars of two first-class low metallicity galaxies with Wolf-Rayet features and nebular HeII emission: Mrk178 and IZw18. In this review, we summarize our main results for these two objects.
We investigate Wolf-Rayet (WR) stars as a source of feedback contributing to the removal of natal material in the early evolution of massive star clusters. Despite previous work suggesting that massive star clusters clear out their natal material before the massive stars evolve into the WR phase, WR stars have been detected in several emerging massive star clusters. These detections suggest that the timescale for clusters to emerge can be at least as long as the time required to produce WR stars (a few million years), and could also indicate that WR stars may be providing the tipping point in the combined feedback processes that drive a massive star cluster to emerge. We explore the potential overlap between the emerging phase and the WR phase with an observational survey to search for WR stars in emerging massive star clusters hosting WR stars. We select candidate emerging massive star clusters from known radio continuum sources with thermal emission and obtain optical spectra with the 4m Mayall Telescope at Kitt Peak National Observatory and the 6.5m MMT. We identify 21 sources with significantly detected WR signatures, which we term emerging WR clusters. WR features are detected in $sim$50% of the radio-selected sample, and thus we find that WR stars are commonly present in massive star clusters currently emerging. The observed extinctions and ages suggest that clusters without WR detections remain embedded for longer periods of time, and may indicate that WR stars can aid, and therefore accelerate, the emergence process.
ABRIGED: Quantifying the number, type and distribution of W-R stars is a key component in the context of galaxy evolution, since they put constraints on the age of the star formation bursts. Nearby galaxies (d<5 Mpc) are particularly relevant in this context since they fill the gap between studies in the Local Group, where individual stars can be resolved, and galaxies in the Local Volume and beyond. We intend to characterize the W-R star population in NGC625, a low-metallicity dwarf galaxy suffering a currently declining burst of star formation. Optical IFS data have been obtained with the VIMOS-IFU covering the starburst region. We estimate the number of W-R stars using a linear combination of 3 W-R templates: 1 early-type nitrogen (WN) star, 1 late-type WN star and 1 carbon-type (WC) star (or oxygen-type (WO) star). Fits using several ensembles of templates were tested. Results were confronted with: i) high spatial resolution HST photometry; ii) numbers of W-R stars in nearby galaxies; iii) model predictions. The W-R star population is spread over the main body of the galaxy, not necessarily coincident with the overall stellar distribution. Our best estimation for the number of W-R stars yields a total of 28 W-R stars in the galaxy, out of which 17 are early- type WN, 6 are late-type WN and 5 are WC stars. The width of the stellar features nicely correlates with the dominant W-R type found in each aperture. The distribution of the different types of WR in the galaxy is roughly compatible with the way star formation has propagated in the galaxy, according to previous findings using HST images. Fits using templates at the metallicity of the LMC yield more reasonable number of W-R than those using templates at the metallicity of the SMC. Given the metallicity of NGC 625, this suggests a non-linear relation between the metallicity and the luminosity of the W-R spectral features.