No Arabic abstract
The effects of viscoelasticity on the dynamics and break-up of fluid threads in microfluidic T-junctions are investigated using numerical simulations of dilute polymer solutions at changing the Capillary number ($mbox {Ca}$), i.e. at changing the balance between the viscous forces and the surface tension at the interface, up to $mbox{Ca} approx 3 times 10^{-2}$. A Navier-Stokes (NS) description of the solvent based on the lattice Boltzmann models (LBM) is here coupled to constitutive equations for finite extensible non-linear elastic dumbbells with the closure proposed by Peterlin (FENE-P model). We present the results of three-dimensional simulations in a range of $mbox{Ca}$ which is broad enough to characterize all the three characteristic mechanisms of breakup in the confined T-junction, i.e. ${it squeezing}$, ${it dripping}$ and ${it jetting}$ regimes. The various model parameters of the FENE-P constitutive equations, including the polymer relaxation time $tau_P$ and the finite extensibility parameter $L^2$, are changed to provide quantitative details on how the dynamics and break-up properties are affected by viscoelasticity. We will analyze cases with ${it Droplet ~Viscoelasticity}$ (DV), where viscoelastic properties are confined in the dispersed (d) phase, as well as cases with ${it Matrix ~Viscoelasticity}$ (MV), where viscoelastic properties are confined in the continuous (c) phase. Moderate flow-rate ratios $Q approx {cal O}(1)$ of the two phases are considered in the present study. Overall, we find that the effects are more pronounced in the case with MV, as the flow driving the break-up process upstream of the emerging thread can be sensibly perturbed by the polymer stresses.
Based on mesoscale lattice Boltzmann (LB) numerical simulations, we investigate the effects of viscoelasticity on the break-up of liquid threads in microfluidic cross-junctions, where droplets are formed by focusing a liquid thread of a dispersed (d) phase into another co-flowing continuous (c) immiscible phase. Working at small Capillary numbers, we investigate the effects of non-Newtonian phases in the transition from droplet formation at the cross-junction (DCJ) to droplet formation downstream of the cross-junction (DC) (Liu $&$ Zhang, ${it Phys. ~Fluids.}$ ${bf 23}$, 082101 (2011)). We will analyze cases with ${it Droplet ~Viscoelasticity}$ (DV), where viscoelastic properties are confined in the dispersed phase, as well as cases with ${it Matrix ~Viscoelasticity}$ (MV), where viscoelastic properties are confined in the continuous phase. Moderate flow-rate ratios $Q approx {cal O}(1)$ of the two phases are considered in the present study. Overall, we find that the effects are more pronounced in the case with MV, where viscoelasticity is found to influence the break-up point of the threads, which moves closer to the cross-junction and stabilizes. This is attributed to an increase of the polymer feedback stress forming in the corner flows, where the side channels of the device meet the main channel. Quantitative predictions on the break-up point of the threads are provided as a function of the Deborah number, i.e. the dimensionless number measuring the importance of viscoelasticity with respect to Capillary forces.
To understand the behavior of composite fluid particles such as nucleated cells and double-emulsions in flow, we study a finite-size particle encapsulated in a deforming droplet under shear flow as a model system. In addition to its concentric particle-droplet configuration, we numerically explore other eccentric and time-periodic equilibrium solutions, which emerge spontaneously via supercritical pitchfork and Hopf bifurcations. We present the loci of these solutions around the codimenstion-two point. We adopt a dynamical system approach to model and characterize the coupled behavior of the two bifurcations. By exploring the flow fields and hydrodynamic forces in detail, we identify the role of hydrodynamic particle-droplet interaction which gives rise to these bifurcations.
The squirmer is a simple yet instructive model for microswimmers, which employs an effective slip velocity on the surface of a spherical swimmer to describe its self-propulsion. We solve the hydrodynamic flow problem with the lattice Boltzmann (LB) method, which is well-suited for time-dependent problems involving complex boundary conditions. Incorporating the squirmer into LB is relatively straight-forward, but requires an unexpectedly fine grid resolution to capture the physical flow fields and behaviors accurately. We demonstrate this using four basic hydrodynamic tests: Two for the far-field flow---accuracy of the hydrodynamic moments and squirmer-squirmer interactions---and two that require the near field to be accurately resolved---a squirmer confined to a tube and one scattering off a spherical obstacle---which LB is capable of doing down to the grid resolution. We find good agreement with (numerical) results obtained using other hydrodynamic solvers in the same geometries and identify a minimum required resolution to achieve this reproduction. We discuss our algorithm in the context of other hydrodynamic solvers and present an outlook on its application to multi-squirmer problems.
A hybrid computational method coupling the lattice-Boltzmann (LB) method and a Langevin-dynamics (LD) method is developed to simulate nanoscale particle and polymer (NPP) suspensions in the presence of both thermal fluctuation and long-range many-body hydrodynamic interactions (HI). Brownian motion of the NPP is explicitly captured by a stochastic forcing term in the LD method. The LD method is two-way coupled to the non-fluctuating LB fluid through a discrete LB forcing source distribution to capture the long-range HI. To ensure intrinsically linear scalability with respect to the number of particles, an Eulerian-host algorithm for short-distance particle neighbor search and interaction is developed and embedded to LB-LD framework. The validity and accuracy of the LB-LD approach are demonstrated through several sample problems. The simulation results show good agreements with theory and experiment. The LB-LD approach can be favorably incorporated into complex multiscale computational frameworks for efficiently simulating multiscale, multicomponent particulate suspension systems such as complex blood suspensions.
A liquid droplet, immersed into a Newtonian fluid, can be propelled solely by internal flow. In a simple model, this flow is generated by a collection of point forces, which represent externally actuated devices or model autonomous swimmers. We work out the general framework to compute the self-propulsion of the droplet as a function of the actuating forces and their positions within the droplet. A single point force, F with general orientation and position, r_0, gives rise to both, translational and rotational motion of the droplet. We show that the translational mobility is anisotropic and the rotational mobility can be nonmonotonic as a function of | r_0|, depending on the viscosity contrast. Due to the linearity of the Stokes equation, superposition can be used to discuss more complex arrays of point forces. We analyse force dipoles, such as a stresslet, a simple model of a biflagellate swimmer and a rotlet, representing a helical swimmer, driven by an external magnetic field. For a general force distribution with arbitrary high multipole moments the propulsion properties of the droplet depend only on a few low order multipoles: up to the quadrupole for translational and up to a special octopole for rotational motion. The coupled motion of droplet and device is discussed for a few exemplary cases. We show in particular that a biflagellate swimmer, modeled as a stresslet, achieves a steady comoving state, where the position of the device relative to the droplet remains fixed. In fact there are two fixpoints, symmetric with respect to the center of the droplet. A tiny external force selects one of them and allows to switch between forward and backward motion.