We study the nature of the frictional jamming transition within the framework of rigidity percolation theory. Slowly sheared frictional packings are decomposed into rigid clusters and floppy regions with a generalization of the pebble game including frictional contacts. We discover a second-order transition controlled by the emergence of a system-spanning rigid cluster accompanied by a critical cluster size distribution. Rigid clusters also correlate with common measures of rigidity. We contrast this result with frictionless jamming, where the rigid cluster size distribution is noncritical.
While frictionless spheres at jamming are isostatic, frictional spheres at jamming are not. As a result, frictional spheres near jamming do not necessarily exhibit an excess of soft modes. However, a generalized form of isostaticity can be introduced if fully mobilized contacts at the Coulomb friction threshold are considered as slipping contacts. We show here that, in this framework, the vibrational density of states (DOS) of frictional discs exhibits a plateau when the generalized isostaticity line is approached. The crossover frequency to elastic behavior scales linearly with the distance from this line. Moreover, we show that the frictionless limit, which appears singular when fully mobilized contacts are treated elastically, becomes smooth when fully mobilized contacts are allowed to slip.
Simulations are used to study the steady shear rheology of dense suspensions of frictional particles exhibiting discontinuous shear thickening and shear jamming, in which finite-range cohesive interactions result in a yield stress. We develop a constitutive model that combines yielding behavior and shear thinning at low stress with the frictional shear thickening at high stresses, in good agreement with the simulation results. This work shows that there is a distinct difference between solids below the yield stress and in the shear-jammed state, as the two occur at widely separated stress levels, separated by a region of stress in which the material is flowable.
The morphology of an elastic strip subject to vertical compressive stress on a frictional rigid substrate is investigated by a combination of theory and experiment. We find a rich variety of morphologies, which -when the bending elasticity dominates over the effect of gravity- are classified into three distinct types of states: pinned, partially slipped, and completely slipped, depending on the magnitude of the vertical strain and coefficient of static friction. We develop a theory of elastica under mixed clamped-hinged boundary conditions combined with the Coulomb-Amontons friction law, and find excellent quantitative agreement with simulations and controlled physical experiments. We also discuss the effect of gravity in order to bridge the difference in qualitative behaviors of stiff strips and flexible strings, or ropes. Our study thus complements recent work on elastic rope coiling, and takes a significant step towards establishing a unified understanding of how a thin elastic object interacts vertically with a solid surface.
A remarkable property of dense suspensions is that they can transform from liquid-like at rest to solid-like under sudden impact. Previous work showed that this impact-induced solidification involves rapidly moving jamming fronts; however, details of this process have remained unresolved. Here we use high-speed ultrasound imaging to probe non-invasively how the interior of a dense suspension responds to impact. Measuring the speed of sound we demonstrate that the solidification proceeds without a detectable increase in packing fraction, and imaging the evolving flow field we find that the shear intensity is maximized right at the jamming front. Taken together, this provides direct experimental evidence for jamming by shear, rather than densification, as driving the transformation to solid-like behavior. Based on these findings we propose a new model to explain the anisotropy in the propagation speed of the fronts and delineate the onset conditions for dynamic shear jamming in suspensions.
Recent theoretical advances offer an exact, first-principle theory of jamming criticality in infinite dimension as well as universal scaling relations between critical exponents in all dimensions. For packings of frictionless spheres near the jamming transition, these advances predict that nontrivial power-law exponents characterize the critical distribution of (i) small inter-particle gaps and (ii) weak contact forces, both of which are crucial for mechanical stability. The scaling of the inter-particle gaps is known to be constant in all spatial dimensions $d$ -- including the physically relevant $d=2$ and 3, but the value of the weak force exponent remains the object of debate and confusion. Here, we resolve this ambiguity by numerical simulations. We construct isostatic jammed packings with extremely high accuracy, and introduce a simple criterion to separate the contribution of particles that give rise to localized buckling excitations, i.e., bucklers, from the others. This analysis reveals the remarkable dimensional robustness of mean-field marginality and its associated criticality.