No Arabic abstract
The morphology of an elastic strip subject to vertical compressive stress on a frictional rigid substrate is investigated by a combination of theory and experiment. We find a rich variety of morphologies, which -when the bending elasticity dominates over the effect of gravity- are classified into three distinct types of states: pinned, partially slipped, and completely slipped, depending on the magnitude of the vertical strain and coefficient of static friction. We develop a theory of elastica under mixed clamped-hinged boundary conditions combined with the Coulomb-Amontons friction law, and find excellent quantitative agreement with simulations and controlled physical experiments. We also discuss the effect of gravity in order to bridge the difference in qualitative behaviors of stiff strips and flexible strings, or ropes. Our study thus complements recent work on elastic rope coiling, and takes a significant step towards establishing a unified understanding of how a thin elastic object interacts vertically with a solid surface.
When a flat elastic strip is compressed along its axis, it is bent in one of two possible directions via spontaneous symmetry breaking and forms a cylindrical arc, a phenomenon well known as Euler buckling. When this cylindrical section is pushed in the other direction, the bending direction can suddenly reverse. This instability is called snap-through buckling and is one of the elementary shape transitions in a prestressed thin structure. Combining experiments and theory, we study snap-buckling of an elastic strip with one end hinged and the other end clamped. These asymmetric boundary constraints break the intrinsic symmetry of the strip, generating rich exotic mechanical behaviors including largely hysteretic but reproducible force responses and switch-like discontinuous shape changes. We establish the set of exact analytical solutions that fully explain all of our major experimental and numerical findings. Asymmetric boundary conditions arise naturally in diverse situations when a thin object is in contact with a solid surface at one end, but their profound consequences for the buckling mechanics have been largely overlooked to date. The idea of introducing asymmetry through boundary conditions would yield new insight into complex and programmable functionalities in material and industrial design.
The temperature dependence of the hydrodynamic boundary condition between a PDMS melt and two different non-attractive surfaces made of either an OTS (octadecyltrichlorosilane) self-assembled monolayer (SAM) or a grafted layer of short PDMS chains has been characterized. A slip length proportional to the fluid viscosity is observed on both surfaces. The slip temperature dependence is deeply influenced by the surfaces. The viscous stress exerted by the polymer liquid on the surface is observed to follow exactly the same temperature dependences as the friction stress of a cross-linked elastomer sliding on the same surfaces. Far above the glass transition temperature, these observations are rationalized in the framework of a molecular model based on activation energies: increase or decrease of the slip length with increasing temperatures can be observed depending on how the activation energy of the bulk viscosity compares to that of the interfacial Naviers friction coefficient.
A theory is presented which quantitatively accounts for the cooperative adsorption of cationic surfactants to anionic polyelectrolytes. For high salt concentration we find that the critical adsorption concentration (CAC) is a bilinear function of the polyion monomer and salt concentrations, with the coefficients dependent only on the type of surfactant used. The results presented in the paper might be useful for designing more efficient gene delivery systems.
Frictional forces affect the rheology of hard-sphere colloids, at high shear rate. Here we demonstrate, via numerical simulations, that they also affect the dynamics of active Brownian particles, and their motility induced phase separation. Frictional forces increase the angular diffusivity of the particles, in the dilute phase, and prevent colliding particles from resolving their collision by sliding one past to the other. This leads to qualitatively changes of motility-induced phase diagram in the volume-fraction motility plane. While frictionless systems become unstable towards phase separation as the motility increases only if their volume fraction overcomes a threshold, frictional system become unstable regardless of their volume fraction. These results suggest the possibility of controlling the motility induced phase diagram by tuning the roughness of the particles.
Hydrodynamic slip of a liquid at a solid surface represents a fundamental phenomenon in fluid dynamics that governs liquid transport at small scales. For polymeric liquids, de Gennes predicted that the Navier boundary condition together with the theory of polymer dynamics imply extraordinarily large interfacial slip for entangled polymer melts on ideal surfaces; this Navier-de Gennes model was confirmed using dewetting experiments on ultra-smooth, low-energy substrates. Here, we use capillary leveling - surface tension driven flow of films with initially non-uniform thickness - of polymeric films on these same substrates. Measurement of the slip length from a robust one-parameter fit to a lubrication model is achieved. We show that at the lower shear rates involved in leveling experiments as compared to dewetting ones, the employed substrates can no longer be considered ideal. The data is instead consistent with physical adsorption of polymer chains at the solid/liquid interface. We extend the Navier-de Gennes description using one additional parameter, namely the density of physically adsorbed chains per unit surface. The resulting formulation is found to be in excellent agreement with the experimental observations.