Do you want to publish a course? Click here

Towards a quantum interface between telecommunication and UV wavelengths: design and classical performance

74   0   0.0 ( 0 )
 Added by Helge R\\\"utz
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose and characterize a quantum interface between telecommunication wavelengths (1311 nm) and an Yb-dipole transition (369.5 nm) based on a second order sum frequency process in a PPKTP waveguide. An external (internal) conversion efficiency above 5% (10%) is shown using classical bright light.



rate research

Read More

Direct UV-written waveguides are fabricated in silica-on-silicon with birefringence of $(4.9 pm 0.2) times 10^{-4}$, much greater than previously reported in this platform. We show that these waveguides are suitable for the generation of heralded single photons at telecommunication wavelengths by spontaneous four-wave mixing. A pulsed pump field at 1060 nm generates pairs of photons in highly detuned, spectrally uncorrelated modes near 1550 nm and 800 nm. Waveguide-to-fiber coupling efficiencies of 78-91% are achieved for all fields. Waveguide birefringence is controlled through dopant concentration of $mathrm{GeCl_4}$ and $mathrm{BCl_3}$ using the flame hydrolysis deposition process. The technology provides a route towards the scalability of silica-on-silicon integrated components for photonic quantum experiments.
Optical quantum communication utilizing satellite platforms has the potential to extend the reach of quantum key distribution (QKD) from terrestrial limits of ~200 km to global scales. We have developed a thorough numerical simulation using realistic simulated orbits and incorporating the effects of pointing error, diffraction, atmosphere and telescope design, to obtain estimates of the loss and background noise which a satellite-based system would experience. Combining with quantum optics simulations of sources and detection, we determine the length of secure key for QKD, as well as entanglement visibility and achievable distances for fundamental experiments. We analyze the performance of a low Earth orbit (LEO) satellite for downlink and uplink scenarios of the quantum optical signals. We argue that the advantages of locating the quantum source on the ground justify a greater scientific interest in an uplink as compared to a downlink. An uplink with a ground transmitter of at least 25 cm diameter and a 30 cm receiver telescope on the satellite could be used to successfully perform QKD multiple times per week with either an entangled photon source or with a weak coherent pulse source, as well as perform long-distance Bell tests and quantum teleportation. Our model helps to resolve important design considerations such as operating wavelength, type and specifications of sources and detectors, telescope designs, specific orbits and ground station locations, in view of anticipated overall system performance.
We present a quantum repeater scheme that is based on individual erbium and europium ions. Erbium ions are attractive because they emit photons at telecommunication wavelength, while europium ions offer exceptional spin coherence for long-term storage. Entanglement between distant erbium ions is created by photon detection. The photon emission rate of each erbium ion is enhanced by a microcavity with high Purcell factor, as has recently been demonstrated. Entanglement is then transferred to nearby europium ions for storage. Gate operations between nearby ions are performed using dynamically controlled electric-dipole coupling. These gate operations allow entanglement swapping to be employed in order to extend the distance over which entanglement is distributed. The deterministic character of the gate operations allows improved entanglement distribution rates in comparison to atomic ensemble-based protocols. We also propose an approach that utilizes multiplexing in order to enhance the entanglement distribution rate.
Nanofabricated mechanical resonators are gaining significant momentum among potential quantum technologies due to their unique design freedom and independence from naturally occurring resonances. With their functionality being widely detached from material choice, they constitute ideal tools to be used as transducers, i.e. intermediaries between different quantum systems, and as memory elements in conjunction with quantum communication and computing devices. Their capability to host ultra-long lived phonon modes is particularity attractive for non-classical information storage, both for future quantum technologies as well as for fundamental tests of physics. Here we demonstrate such a mechanical quantum memory with an energy decay time of $T_1approx2$ ms, which is controlled through an optical interface engineered to natively operate at telecom wavelengths. We further investigate the coherence of the memory, equivalent to the dephasing $T_2^*$ for qubits, which exhibits a power dependent value between 15 and 112 $mu$s. This demonstration is enabled by a novel optical scheme to create a superposition state of $rvert{0}rangle+rvert{1}rangle$ mechanical excitations, with an arbitrary ratio between the vacuum and single phonon components.
Experimental results are presented on the efficiency limits for a quantum interface between a matter-based qubit and a photonic qubit. Using a trapped ion in an optical cavity, we obtain a single ion-entangled photon at the cavity output with a probability of 0.69(3). The performance of our system is shown to saturate the upper limit to photon-collection probability from a quantum emitter in a cavity, set by the emitters electronic structure and by the cavity parameters. The probability for generating and detecting the ion-entangled fiber-coupled photon is 0.462(3), a five-fold increase over the previous best performance. Finally, the generation and detection of up to 15 sequential polarised photons demonstrates the ability of a trapped ion to serve as a multi-photon source. The comparison between measured probabilities and predicted bounds is relevant for quantum emitters beyond trapped ions, in particular, for the design of future systems optimising photon collection from, and absorption in, quantum matter.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا