Do you want to publish a course? Click here

A Gauss-Newton Method for Markov Decision Processes

64   0   0.0 ( 0 )
 Added by Guy Lever Dr
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Approximate Newton methods are a standard optimization tool which aim to maintain the benefits of Newtons method, such as a fast rate of convergence, whilst alleviating its drawbacks, such as computationally expensive calculation or estimation of the inverse Hessian. In this work we investigate approximate Newton methods for policy optimization in Markov Decision Processes (MDPs). We first analyse the structure of the Hessian of the objective function for MDPs. We show that, like the gradient, the Hessian exhibits useful structure in the context of MDPs and we use this analysis to motivate two Gauss-Newton Methods for MDPs. Like the Gauss-Newton method for non-linear least squares, these methods involve approximating the Hessian by ignoring certain terms in the Hessian which are difficult to estimate. The approximate Hessians possess desirable properties, such as negative definiteness, and we demonstrate several important performance guarantees including guaranteed ascent directions, invariance to affine transformation of the parameter space, and convergence guarantees. We finally provide a unifying perspective of key policy search algorithms, demonstrating that our second Gauss-Newton algorithm is closely related to both the EM-algorithm and natural gradient ascent applied to MDPs, but performs significantly better in practice on a range of challenging domains.



rate research

Read More

119 - Thomas Furmston , Guy Lever 2013
Recently two approximate Newton methods were proposed for the optimisation of Markov Decision Processes. While these methods were shown to have desirable properties, such as a guarantee that the preconditioner is negative-semidefinite when the policy is $log$-concave with respect to the policy parameters, and were demonstrated to have strong empirical performance in challenging domains, such as the game of Tetris, no convergence analysis was provided. The purpose of this paper is to provide such an analysis. We start by providing a detailed analysis of the Hessian of a Markov Decision Process, which is formed of a negative-semidefinite component, a positive-semidefinite component and a remainder term. The first part of our analysis details how the negative-semidefinite and positive-semidefinite components relate to each other, and how these two terms contribute to the Hessian. The next part of our analysis shows that under certain conditions, relating to the richness of the policy class, the remainder term in the Hessian vanishes in the vicinity of a local optimum. Finally, we bound the behaviour of this remainder term in terms of the mixing time of the Markov chain induced by the policy parameters, where this part of the analysis is applicable over the entire parameter space. Given this analysis of the Hessian we then provide our local convergence analysis of the approximate Newton framework.
Coordination of distributed agents is required for problems arising in many areas, including multi-robot systems, networking and e-commerce. As a formal framework for such problems, we use the decentralized partially observable Markov decision process (DEC-POMDP). Though much work has been done on optimal dynamic programming algorithms for the single-agent version of the problem, optimal algorithms for the multiagent case have been elusive. The main contribution of this paper is an optimal policy iteration algorithm for solving DEC-POMDPs. The algorithm uses stochastic finite-state controllers to represent policies. The solution can include a correlation device, which allows agents to correlate their actions without communicating. This approach alternates between expanding the controller and performing value-preserving transformations, which modify the controller without sacrificing value. We present two efficient value-preserving transformations: one can reduce the size of the controller and the other can improve its value while keeping the size fixed. Empirical results demonstrate the usefulness of value-preserving transformations in increasing value while keeping controller size to a minimum. To broaden the applicability of the approach, we also present a heuristic version of the policy iteration algorithm, which sacrifices convergence to optimality. This algorithm further reduces the size of the controllers at each step by assuming that probability distributions over the other agents actions are known. While this assumption may not hold in general, it helps produce higher quality solutions in our test problems.
Euclidean Markov decision processes are a powerful tool for modeling control problems under uncertainty over continuous domains. Finite state imprecise, Markov decision processes can be used to approximate the behavior of these infinite models. In this paper we address two questions: first, we investigate what kind of approximation guarantees are obtained when the Euclidean process is approximated by finite state approximations induced by increasingly fine partitions of the continuous state space. We show that for cost functions over finite time horizons the approximations become arbitrarily precise. Second, we use imprecise Markov decision process approximations as a tool to analyse and validate cost functions and strategies obtained by reinforcement learning. We find that, on the one hand, our new theoretical results validate basic design choices of a previously proposed reinforcement learning approach. On the other hand, the imprecise Markov decision process approximations reveal some inaccuracies in the learned cost functions.
59 - Zhengling Qi , Peng Liao 2020
We study the sequential decision making problem in Markov decision process (MDP) where each policy is evaluated by a set containing average rewards over different horizon lengths and with different initial distributions. Given a pre-collected dataset of multiple trajectories generated by some behavior policy, our goal is to learn a robust policy in a pre-specified policy class that can maximize the smallest value of this set. Leveraging the semi-parametric efficiency theory from statistics, we develop a policy learning method for estimating the defined robust optimal policy that can efficiently break the curse of horizon under mild technical conditions. A rate-optimal regret bound up to a logarithmic factor is established in terms of the number of trajectories and the number of decision points.
We study planning problems where autonomous agents operate inside environments that are subject to uncertainties and not fully observable. Partially observable Markov decision processes (POMDPs) are a natural formal model to capture such problems. Because of the potentially huge or even infinite belief space in POMDPs, synthesis with safety guarantees is, in general, computationally intractable. We propose an approach that aims to circumvent this difficulty: in scenarios that can be partially or fully simulated in a virtual environment, we actively integrate a human user to control an agent. While the user repeatedly tries to safely guide the agent in the simulation, we collect data from the human input. Via behavior cloning, we translate the data into a strategy for the POMDP. The strategy resolves all nondeterminism and non-observability of the POMDP, resulting in a discrete-time Markov chain (MC). The efficient verification of this MC gives quantitative insights into the quality of the inferred human strategy by proving or disproving given system specifications. For the case that the quality of the strategy is not sufficient, we propose a refinement method using counterexamples presented to the human. Experiments show that by including humans into the POMDP verification loop we improve the state of the art by orders of magnitude in terms of scalability.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا