Do you want to publish a course? Click here

Odd-dimensional cohomology with finite coefficients and roots of unity

90   0   0.0 ( 0 )
 Added by Yuri Zarhin G.
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We prove that the triviality of the Galois action on the suitably twisted odd-dimensional etale cohomogy group of a smooth projective varietiy with finite coefficients implies the existence of certain primitive roots of unity in the field of definition of the variety. This text was inspired by an exercise in Serres Lectures on the Mordell--Weil theorem.



rate research

Read More

We prove various finiteness and representability results for flat cohomology of finite flat abelian group schemes. In particular, we show that if $f:Xrightarrow mathrm{Spec} (k)$ is a projective scheme over a field $k$ and $G$ is a finite flat abelian group scheme over $X$ then $R^if_*G$ is an algebraic space for all $i$. More generally, we study the derived pushforwards $R^if_*G$ for $f:Xrightarrow S$ a projective morphism and $G$ a finite flat abelian group scheme over $X$. We also develop a theory of compactly supported cohomology for finite flat abelian group schemes, describe cohomology in terms of the cotangent complex for group schemes of height $1$, and relate the Dieudonne modules of the group schemes $R^if_*mu _p$ to cohomology generalizing work of Illusie. A higher categorical version of our main representability results is also presented.
119 - R.M. Fonseca , W. Grimus 2015
The classification of lepton mixing matrices from finite residual symmetries is reviewed, with emphasis on the role of vanishing sums of roots of unity for the solution of this problem.
We give an explicit conjectural formula for the motivic Euler characteristic of an arbitrary symplectic local system on the moduli space A_3 of principally polarized abelian threefolds. The main term of the formula is a conjectural motive of Siegel modular forms of a certain type; the remaining terms admit a surprisingly simple description in terms of the motivic Euler characteristics for lower genera. The conjecture is based on extensive counts of curves of genus three and abelian threefolds over finite fields. It provides a lot of new information about vector-valued Siegel modular forms of degree three, such as dimension formulas and traces of Hecke operators. We also use it to predict several lifts from genus 1 to genus 3, as well as lifts from G_2 and new congruences of Harder type.
At roots of unity the $N$-state integrable chiral Potts model and the six-vertex model descend from each other with the $tau_2$ model as the intermediate. We shall discuss how different gauge choices in the six-vertex model lead to two different quantum group constructions with different $q$-Pochhammer symbols, one construction only working well for $N$ odd, the other equally well for all $N$. We also address the generalization based on the sl$(m,n)$ vertex model.
164 - Sophie Morel 2018
The goal of this paper is to calculate the trace of the composition of a Hecke correspondence and a (high enough) power of the Frobenius at a good place on the intersection cohomology of the Satake-Baily-Borel compactification of certain Shimura varieties, to stabilize the result for Shimura varieties associated to unitary groups over $mathbb{Q}$ and to give applications of this calculations using base change from these unitary groups to $GL_n$. ----- Le but de ce texte est de calculer la trace dune correspondance de Hecke composee avec une puissance (assez grande) du Frobenius en une bonne place sur la cohomologie dintersection de la compactification de Satake-Baily-Borel de certaines varietes de Shimura, de stabiliser le resultat obtenu pour les varietes de Shimura associees aux groupes unitaires sur $mathbb{Q}$, et de donner des applications de ces calculs en utilisant le changement de base de ces groupes unitaires a $GL_n$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا