No Arabic abstract
VeriFast is a leading research prototype tool for the sound modular verification of safety and correctness properties of single-threaded and multithreaded C and Java programs. It has been used as a vehicle for exploration and validation of novel program verification techniques and for industrial case studies; it has served well at a number of program verification competitions; and it has been used for teaching by multiple teachers independent of the authors. However, until now, while VeriFasts operation has been described informally in a number of publications, and specific verification techniques have been formalized, a clear and precise exposition of how VeriFast works has not yet appeared. In this article we present for the first time a formal definition and soundness proof of a core subset of the VeriFast program verification approach. The exposition aims to be both accessible and rigorous: the text is based on lecture notes for a graduate course on program verification, and it is backed by an executable machine-readable definition and machine-checked soundness proof in Coq.
We present FJ&$lambda$, a new core calculus that extends Featherweight Java (FJ) with interfaces, supporting multiple inheritance in a restricted form, $lambda$-expressions, and intersection types. Our main goal is to formalise how lambdas and intersection types are grafted on Java 8, by studying their properties in a formal setting. We show how intersection types play a significant role in several cases, in particular in the typecast of a $lambda$-expression and in the typing of conditional expressions. We also embody interface emph{default methods} in FJ&$lambda$, since they increase the dynamism of $lambda$-expressions, by allowing these methods to be called on $lambda$-expressions. The crucial point in Java 8 and in our calculus is that $lambda$-expressions can have various types according to the context requirements (target types): indeed, Java code does not compile when $lambda$-expressions come without target types. In particular, in the operational semantics we must record target types by decorating $lambda$-expressions, otherwise they would be lost in the runtime expressions. We prove the subject reduction property and progress for the resulting calculus, and we give a type inference algorithm that returns the type of a given program if it is well typed. The design of FJ&$lambda$ has been driven by the aim of making it a subset of Java 8, while preserving the elegance and compactness of FJ. Indeed, FJ&$lambda$ programs are typed and behave the same as Java programs.
Wegner describes coordination as constrained interaction. We take this approach literally and define a coordination model based on interaction constraints and partial, iterative and interactive constraint satisfaction. Our model captures behaviour described in terms of synchronisation and data flow constraints, plus various modes of interaction with the outside world provided by external constraint symbols, on-the-fly constraint generation, and coordination variables. Underlying our approach is an engine performing (partial) constraint satisfaction of the sets of constraints. Our model extends previous work on three counts: firstly, a more advanced notion of external interaction is offered; secondly, our approach enables local satisfaction of constraints with appropriate partial solutions, avoiding global synchronisation over the entire constraints set; and, as a consequence, constraint satisfaction can finally occur concurrently, and multiple parts of a set of constraints can be solved and interact with the outside world in an asynchronous manner, unless synchronisation is required by the constraints. This paper describes the underlying logic, which enables a notion of local solution, and relates this logic to the more global approach of our previous work based on classical logic.
Whether the satisfiability of any formula F of propositional calculus can be determined in polynomial time is an open question. I propose a simple procedure based on some real world mechanisms to tackle this problem. The main result is the blueprint for a machine which is able to test any formula in conjunctive normal form (CNF) for satisfiability in linear time. The device uses light and some electrochemical properties to function. It adapts itself to the scope of the problem without growing exponentially in mass with the size of the formula. It requires infinite precision in its components instead.
We propose a formal framework that supports a model of agent-based Virtual Organisations (VOs) for service grids and provides an associated operational model for the creation of VOs. The framework is intended to be used for describing different service grid applications based on multiple agents and, as a result, it abstracts away from any realisation choices of the service grid application, the agents involved to support the applications and their interactions. Within the proposed framework VOs are seen as emerging from societies of agents, where agents are abstractly characterised by goals and roles they can play within VOs. In turn, VOs are abstractly characterised by the agents participating in them with specific roles, as well as the workflow of services and corresponding contracts suitable for achieving the goals of the participating agents. We illustrate the proposed framework with an earth observation scenario.
The lambda-calculus with de Bruijn indices assembles each alpha-class of lambda-terms in a unique term, using indices instead of variable names. Intersection types provide finitary type polymorphism and can characterise normalisable lambda-terms through the property that a term is normalisable if and only if it is typeable. To be closer to computations and to simplify the formalisation of the atomic operations involved in beta-contractions, several calculi of explicit substitution were developed mostly with de Bruijn indices. Versions of explicit substitutions calculi without types and with simple type systems are well investigated in contrast