Do you want to publish a course? Click here

Unsaturated both large positive and negative magnetoresistance in Weyl Semimetal TaP

164   0   0.0 ( 0 )
 Added by Minghu Fang
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

After growing successfully TaP single crystal, we measured its longitudinal resistivity (rhoxx) and Hall resistivity (rhoyx) at magnetic fields up to 9T in the temperature range of 2-300K. It was found that at 2K its magnetoresistivity (MR) reaches to 328000 percent, at 300K to 176 percent at 8T, and both do not appear saturation. We confirmed that TaP is indeed a low carrier concentration, hole-electron compensated semimetal, with a high mobility of hole muh=371000 cm2V-1s-1, and found that a magnetic-field-induced metal-insulator transition occurs at room temperature. Remarkably, as a magnetic field (H) is applied in parallel to the electric field (E), the negative MR due to chiral anomaly is observed, and reaches to -3000 percent at 9T without any signature of saturation, too, which distinguishes with other Weyl semimetals (WSMs). The analysis on the Shubnikov-de Haas (SdH) oscillations superimposing on the MR reveals that a nontrivial Berry phase with strong offset of 0.3958 realizes in TaP, which is the characteristic feature of the charge carriers enclosing a Weyl nodes. These results indicate that TaP is a promising candidate not only for revealing fundamental physics of the WSM state but also for some novel applications.



rate research

Read More

Weyl semimetals (WSMs) are topological quantum states wherein the electronic bands linearly disperse around pairs of nodes, the Weyl points, of fixed (left or right) chirality. The recent discovery of WSM materials triggered an experimental search for the exotic quantum phenomenon known as the chiral anomaly. Via the chiral anomaly nonorthogonal electric and magnetic fields induce a chiral density imbalance that results in an unconventional negative longitudinal magnetoresistance, the chiral magnetic effect. Recent theoretical work suggests that this effect does not require well-defined Weyl nodes. Experimentally however, it remains an open question to what extent it survives when chirality is not well-defined, for example when the Fermi energy is far away from the Weyl points. Here, we establish the detailed Fermi surface topology of the recently identified WSM TaP via a combination of angle-resolved quantum oscillation spectra and band structure calculations. The Fermi surface forms spin-polarized banana-shaped electron and hole pockets attached to pairs of Weyl points. Although the chiral anomaly is therefore ill-defined, we observe a large negative magnetoresistance (NMR) appearing for collinear magnetic and electric fields as observed in other WSMs. In addition, we show experimental signatures indicating that such longitudinal magnetoresistance measurements can be affected by an inhomogeneous current distribution inside the sample in a magnetic field. Our results provide a clear framework how to detect the chiral magnetic effect.
162 - Hui Li , Hongtao He , Hai-Zhou Lu 2015
A large negative magnetoresistance is anticipated in topological semimetals in the parallel magnetic and electric field configuration as a consequence of the nontrivial topological properties. The negative magnetoresistance is believed to demonstrate the chiral anomaly, a long-sought high-energy physics effect, in solid-state systems. Recent experiments reveal that Cd3As2, a Dirac topological semimetal, has the record-high mobility and exhibits positive linear magnetoresistance in the orthogonal magnetic and electric field configuration. However, the negative magnetoresistance in the parallel magnetic and electric field configuration remains unveiled. Here, we report the observation of the negative magnetoresistance in Cd3As2 microribbons in the parallel magnetic and electric field configuration as large as 66% at 50 K and even visible at room temperatures. The observed negative magnetoresistance is sensitive to the angle between magnetic and electrical field, robust against temperature, and dependent on the carrier density. We have found that carrier densities of our Cd3As2 samples obey an Arrheniuss law, decreasing from 3.0x10^17 cm^-3 at 300 K to 2.2x10^16 cm^-3 below 50 K. The low carrier densities result in the large values of the negative magnetoresistance. We therefore attribute the observed negative magnetoresistance to the chiral anomaly. Furthermore, in the perpendicular magnetic and electric field configuration a positive non-saturating linear magnetoresistance up to 1670% at 14 T and 2 K is also observed. This work demonstrates potential applications of topological semimetals in magnetic devices.
476 - L.-K. Zeng , R. Lou , D.-S. Wu 2016
By combining angle-resolved photoemission spectroscopy and quantum oscillation measurements, we performed a comprehensive investigation on the electronic structure of LaSb, which exhibits near-quadratic extremely large magnetoresistance (XMR) without any sign of saturation at magnetic fields as high as 40 T. We clearly resolve one spherical and one intersecting-ellipsoidal hole Fermi surfaces (FSs) at the Brillouin zone (BZ) center $Gamma$ and one ellipsoidal electron FS at the BZ boundary $X$. The hole and electron carriers calculated from the enclosed FS volumes are perfectly compensated, and the carrier compensation is unaffected by temperature. We further reveal that LaSb is topologically trivial but share many similarities with the Weyl semimetal TaAs family in the bulk electronic structure. Based on these results, we have examined the mechanisms that have been proposed so far to explain the near-quadratic XMR in semimetals.
We report on large negative magnetoresistance observed in ferromagnetic thiospinel compound CuCrZrS$_{4}$. Electrical resistivity increased with decreasing temperature according to the form proportional to $textrm{exp}(T_{0}/T)^{1/2} $, derived from variable range hopping with strong electron-electron interaction. Resistivity under magnetic fields was expressed by the same form with the characteristic temperature T0 decreasing with increasing magnetic field. Magnetoresistance ratio $rho (T,0)/rho(T,H)$ is 1.5 at 100 K for H=90 kOe and increases divergently with decreasing temperature reaching 80 at 16 K. Results of magnetization measurements are also presented. Possible mechanism of the large magnetoresistance is discussed.
We report the discovery of a novel giant magnetoresistance (GMR) phenomenon in a family of BaMn$_{2}$Pn$_{2}$ antiferromagnets (Pn stands for P, As, Sb, and Bi) with a parity-time symmetry. The resistivities of these materials are reduced by $60$ times in magnetic fields ($vec{H}$s), thus yielding the GMR of about $-98%$. The GMR changes systematically along with the Pn elements, hinting that its origin is the spin orbit coupling (SOC) and/or $d$-$p$ orbital hybridization. A positive MR component emerging on top of the negative GMR at low temperatures suggests an orbital-sensitive magnetotransport as $vec{H}$ suppresses the conduction of the electron-like carriers in the $d$-like band but enhances those of hole-like ones in the $d$-$p$ hybridized band. The anisotropy of the GMR reveals that the electrical conductivity is extremely sensitive to the minute changes in the direction of the antiferromagnetic moments induced by the parity-time breaking $vec{H}$, which seems to be associated with a magnetoelectric effect in the dynamic regime of conduction electrons. We attribute the observed GMR to the non-trivial low energy band of BMPns, which is governed by the parity-time symmetry and an magnetic hexadecapole ordering.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا