Do you want to publish a course? Click here

On the role of tachoclines in solar and stellar dynamos

159   0   0.0 ( 0 )
 Added by Gustavo Guerrero
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Rotational shear layers at the boundary between radiative and convective zones, tachoclines, play a key role in the process of magnetic field generation in solar-like stars. We present two sets of global simulations of rotating turbulent convection and dynamo. The first set considers a stellar convective envelope only; the second one, aiming at the formation of a tachocline, considers also the upper part of the radiative zone. Our results indicate that the resulting mean-flows and dynamo properties like the growth rate, saturation energy and mode depend on the Rossby (Ro) number. For the first set of models either oscillatory (with ~2 yr period) or steady dynamo solutions are obtained. The models in the second set naturally develop a tachocline which, in turn, leads to the generation of strong mean magnetic field. Since the field is also deposited into the stable deeper layer, its evolutionary time-scale is much longer than in the models without a tachocline. Surprisingly, the magnetic field in the upper turbulent convection zone evolves in the same time scale as the deep field. These models result in either an oscillatory dynamo with ~30 yr period or in a steady dynamo depending on Ro. In terms of the mean-field dynamo coefficients computed using FOSA, the field evolution in the oscillatory models without a tachocline seems to be consistent with dynamo waves propagating according to the Parker-Yoshimura sign rule. In the models with tachoclines the dynamics is more complex involving other transport mechanisms as well as tachocline instabilities.



rate research

Read More

290 - M. J. Mantere 2012
In this paper we first discuss observational evidence of longitudinal concentrations of magnetic activity in the Sun and rapidly rotating late-type stars with outer convective envelopes. Scenarios arising from the idea of rotationally influenced anisotropic convective turbulence being the key physical process generating these structures are then presented and discussed - such effects include the turbulent dynamo mechanism, negative effective magnetic pressure instability (NEMPI) and hydrodynamical vortex instability. Finally, we discuss non-axisymmetric stellar mean-field dynamo models, the results obtained with them, and compare those with the observational information gathered up so far. We also present results from a pure alpha-squared mean-field dynamo model, which show that time-dependent behavior of the dynamo solutions can occur both in the form of an azimuthal dynamo wave and/or oscillatory behavior related to the alternating energy levels of the active longitudes.
176 - D. L. Moss , D.D. Sokoloff 2017
Observations of the solar butterfly diagram from sunspot records suggest persistent fluctuation in parity, away from the overall, approximately dipolar structure. We use a simple mean-field dynamo model with a solar-like rotation law, and perturb the $alpha$-effect. We find that the parity of the magnetic field with respect to the rotational equator can demonstrate what we describe as resonant behaviour, while the magnetic energy behaves in a more or less expected way. We discuss possible applications of the phenomena in the context of various deviations of the solar magnetic field from dipolar symmetry, as reported from analysis of archival sunspot data. We deduce that our model produces fluctuations in field parity, and hence in the butterfly diagram, that are consistent with observed fluctaions in solar behaviour.
Magnetic helicity fluxes in turbulently driven alpha^2 dynamos are studied to demonstrate their ability to alleviate catastrophic quenching. A one-dimensional mean-field formalism is used to achieve magnetic Reynolds numbers of the order of 10^5. We study both diffusive magnetic helicity fluxes through the mid-plane as well as those resulting from the recently proposed alternate dynamic quenching formalism. By adding shear we make a parameter scan for the critical values of the shear and forcing parameters for which dynamo action occurs. For this $alphaOmega$ dynamo we find that the preferred mode is antisymmetric about the mid-plane. This is also verified in 3-D direct numerical simulations.
80 - G Guerrero 2020
The dynamo mechanism, responsible for the solar magnetic activity, is still an open problem in astrophysics. Different theories proposed to explain such phenomena have failed in reproducing the observational properties of the solar magnetism. Thus, ab-initio computational modeling of the convective dynamo in a spherical shell turns out as the best alternative to tackle this problem. In this work we review the efforts performed in global simulations over the past decades. Regarding the development and sustain of mean-flows, as well as mean magnetic field, we discuss the points of agreement and divergence between the different modeling strategies. Special attention is given to the implicit large-eddy simulations performed with the EULAG-MHD code.
Observations of surface magnetic fields are now within reach for many stellar types thanks to the development of Zeeman-Doppler Imaging. These observations are extremely useful for constraining rotational evolution models of stars, as well as for characterizing the generation of magnetic field. We recently demonstrated that the impact of coronal magnetic field topology on the rotational braking of a star can be parametrized with a scalar parameter: the open magnetic flux. However, without running costly numerical simulations of the stellar wind, reconstructing the coronal structure of the large scale magnetic field is not trivial. An alternative -broadly used in solar physics- is to extrapolate the surface magnetic field assuming a potential field in the corona, to describe the opening of the field lines by the magnetized wind. This technique relies on the definition of a so-called source surface radius, which is often fixed to the canonical value of 2.5Rsun. However this value likely varies from star to star. To resolve this issue, we use our extended set of 2.5D wind simulations published in 2015, to provide a criteria for the opening of field lines as well as a simple tool to assess the source surface radius and the open magnetic flux. This allows us to derive the magnetic torque applied to the star by the wind from any spectropolarimetric observation. We conclude by discussing some estimations of spin-down time scales made using our technique, and compare them to observational requirements.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا