Do you want to publish a course? Click here

From solar to stellar corona: the role of wind, rotation and magnetism

72   0   0.0 ( 0 )
 Added by Victor R\\'eville
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Observations of surface magnetic fields are now within reach for many stellar types thanks to the development of Zeeman-Doppler Imaging. These observations are extremely useful for constraining rotational evolution models of stars, as well as for characterizing the generation of magnetic field. We recently demonstrated that the impact of coronal magnetic field topology on the rotational braking of a star can be parametrized with a scalar parameter: the open magnetic flux. However, without running costly numerical simulations of the stellar wind, reconstructing the coronal structure of the large scale magnetic field is not trivial. An alternative -broadly used in solar physics- is to extrapolate the surface magnetic field assuming a potential field in the corona, to describe the opening of the field lines by the magnetized wind. This technique relies on the definition of a so-called source surface radius, which is often fixed to the canonical value of 2.5Rsun. However this value likely varies from star to star. To resolve this issue, we use our extended set of 2.5D wind simulations published in 2015, to provide a criteria for the opening of field lines as well as a simple tool to assess the source surface radius and the open magnetic flux. This allows us to derive the magnetic torque applied to the star by the wind from any spectropolarimetric observation. We conclude by discussing some estimations of spin-down time scales made using our technique, and compare them to observational requirements.



rate research

Read More

Coronal jets are transient, collimated eruptions that occur in regions of predominantly open magnetic field in the solar corona. Our understanding of these events has greatly evolved in recent years but several open questions, such as the contribution of coronal jets to the solar wind, remain. Here we present an overview of the observations and numerical modeling of coronal jets, followed by a brief description of next-generation simulations that include an advanced description of the energy transfer in the corona (thermodynamic MHD), large spherical computational domains, and the solar wind. These new models will allow us to address some of the open questions.
216 - Kejun Li , W. Feng 2019
Over 54 years of hourly mean value of solar wind velocity from 27 Nov. 1963 to 31 Dec. 2017 are used to investigate characteristics of the rotation period of solar wind through auto-correlation analysis. Solar wind of high velocity is found to rotate faster than low-velocity wind, while its rotation rate increases with velocity increasing, but in contrast for solar wind of low velocity, its rotation rate decreases with velocity increasing. Our analysis shows that solar wind of a higher velocity statistically possesses a faster rotation rate for the entire solar wind. The yearly rotation rate of solar wind velocity does not follow the Schwable cycle, but it is significantly negatively correlated to yearly sunspot number when it leads by 3 years. Physical explanations are proposed to these findings.
Two of the most widely observed and yet most puzzling features of the Suns magnetic field are coronal loops that are smooth and laminar and prominences/filaments that are strongly sheared. These two features would seem to be quite unrelated in that the loops are near their minimum-energy current-free state, whereas filaments are regions of high magnetic stress and intense electric currents. We argue that, in fact, these two features are inextricably linked in that both are due to a single process: the injection of magnetic helicity into the corona by photospheric motions and the subsequent evolution of this helicity by coronal reconnection. In this paper, we present numerical simulations of the response of a citet{Parker72} corona to photospheric driving motions that have varying degrees of helicity preference. We obtain four main conclusions: 1) in agreement with the helicity condensation model of citet{Antiochos13}, the inverse cascade of helicity by magnetic reconnection results in the formation of prominences/filaments localized about polarity inversion lines (PILs); 2) this same process removes most structure from the rest of the corona, resulting in smooth and laminar coronal loops; 3) the amount of remnant tangling in coronal loops is inversely dependent on the net helicity injected by the driving motions; and 4) the structure of the solar corona depends only on the helicity preference of the driving motions and not on their detailed time dependence. We discuss the implications of our results for high-resolution observations of the corona.
147 - A. A. Vidotto 2014
We investigate how the observed large-scale surface magnetic fields of low-mass stars (~0.1 -- 2 Msun), reconstructed through Zeeman-Doppler imaging (ZDI), vary with age t, rotation and X-ray emission. Our sample consists of 104 magnetic maps of 73 stars, from accreting pre-main sequence to main-sequence objects (1 Myr < t < 10 Gyr). For non-accreting dwarfs we empirically find that the unsigned average large-scale surface field <|Bv|> is related to age as $t^{-0.655 pm 0.045}$. This relation has a similar dependence to that identified by Skumanich (1972), used as the basis for gyrochronology. Likewise, our relation could be used as an age-dating method (magnetochronology). The trends with rotation we find for the large-scale stellar magnetism are consistent with the trends found from Zeeman broadening measurements (sensitive to large- and small-scale fields). These similarities indicate that the fields recovered from both techniques are coupled to each other, suggesting that small- and large-scale fields could share the same dynamo field generation processes. For the accreting objects, fewer statistically significant relations are found, with one being a correlation between the unsigned magnetic flux and rotation period. We attribute this to a signature of star-disc interaction, rather than being driven by the dynamo.
425 - Ehsan Tavabi 2018
One of the most important features in the solar atmosphere is magnetic network and its rela- tionship with the transition region (TR), and coronal brightness. It is important to understand how energy is transported into the corona and how it travels along the magnetic-field lines be- tween deep photosphere and chromosphere through the TR and corona. An excellent proxy for transportation is the Interface Region Imaging Spectrograph (IRIS) raster scans and imaging observations in near-ultraviolet (NUV) and far-ultraviolet (FUV) emission channels with high time-spatial resolutions. In this study, we focus on the quiet Sun as observed with IRIS. The data with high signal to noise ratio in Si IV, C II and Mg II k lines and with strong emission intensities show a high correlation in TR bright network points. The results of the IRIS intensity maps and dopplergrams are compared with those of Atmo- spheric Imaging Assembly (AIA) and Helioseismic and Magnetic Imager (HMI) instruments onboard the Solar Dynamical Observatory (SDO). The average network intensity profiles show a strong correlation with AIA coronal channels. Furthermore, we applied simultaneous observations of magnetic network from HMI and found a strong relationship between the network bright points in all levels of the solar atmosphere. These features in network elements exhibited high doppler velocity regions and large mag- netic signatures. A dominative fraction of corona bright points emission, accompanied by the magnetic origins in photosphere, suggest that magnetic-field concentrations in the network rosettes could help couple between inner and outer solar atmosphere.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا