No Arabic abstract
Double-Fourier interferometry is the most viable path to sub-arcsecond spatial resolution for future astronomical instruments that will observe the universe at far-infrared wavelengths. The double transform spatio-spectral interferometry couples pupil plane beam combination with detector arrays to enable imaging spectroscopy of wide fields, that will be key to accomplishing top-level science goals. The wide field of view and the necessity for these instruments to fly above the opaque atmosphere create unique characteristics and requirements compared to instruments on ground-based telescopes. In this paper, we discuss some characteristics of single-baseline spatio-spectral interferometers. We investigate the impact of intensity and optical path difference noise on the interferogram and the spectral signal-to-noise ratio. We apply our findings to the special case of the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII), a balloon payload that will be a first application of this technique at far-infrared wavelengths on a flying platform.
The principles and practice of astronomical imaging Fourier transform spectroscopy (FTS) at far-infrared wavelengths are described. The Mach-Zehnder interferometer design has been widely adopted for current and future imaging FTS instruments; we compare this design with two other common interferometer formats. Examples of three instruments based on the Mach-Zehnder design are presented. The techniques for retrieving astrophysical parameters from the measured spectra are discussed using calibration data obtained with the Herschel SPIRE instrument. The paper concludes with an example of imaging spectroscopy obtained with the SPIRE FTS instrument.
The Far-Infrared Surveyor (FIS) onboard the AKARI satellite has a spectroscopic capability provided by a Fourier transform spectrometer (FIS-FTS). FIS-FTS is the first space-borne imaging FTS dedicated to far-infrared astronomical observations. We describe the calibration process of the FIS-FTS and discuss its accuracy and reliability. The calibration is based on the observational data of bright astronomical sources as well as two instrumental sources. We have compared the FIS-FTS spectra with the spectra obtained from the Long Wavelength Spectrometer (LWS) of the Infrared Space Observatory (ISO) having a similar spectral coverage. The present calibration method accurately reproduces the spectra of several solar system objects having a reliable spectral model. Under this condition the relative uncertainty of the calibration of the continuum is estimated to be $pm$ 15% for SW, $pm$ 10% for 70-85 cm^(-1) of LW, and $pm$ 20% for 60-70 cm^(-1) of LW; and the absolute uncertainty is estimated to be +35/-55% for SW, +35/-55% for 70-85 cm^(-1) of LW, and +40/-60% for 60-70 cm^(-1) of LW. These values are confirmed by comparison with theoretical models and previous observations by the ISO/LWS.
The Far-InfraRed Spectroscopic Explorer (FIRSPEX) is a candidate mission in response to a bi-lateral Small-mission call issued by the European Space Agency (ESA) and the Chinese Academy of Sciences (CAS). FIRSPEX is a small satellite (~1m telescope) operating from Low Earth Orbit (LEO). It consists of a number of heterodyne detection bands targeting key molecular and atomic transitions in the terahertz (THz) and Supra-Terahertz (>1 THz) frequency range. The FIRSPEX bands are: [CII] 158 microns (1.9 THz), [NII] 205 microns (1.46 THz), [CI] 370 microns (0.89 THz), CO(6-5) 433 microns (0.69 THz). The primary goal of FIRSPEX is to perform an unbiased all sky spectroscopic survey in four far-infrared lines delivering the first 3D-maps (high spectral resolution) of the Galaxy. The spectroscopic surveys will build on the heritage of Herschel and complement the broad-band all-sky surveys carried out by the IRAS and AKARI observatories. In addition FIRSPEX will enable targeted observations of nearby and distant galaxies allowing for an in-depth study of the ISM components.
The European Far-Infrared (FIR) Space Roadmap focuses on fundamental, yet still unresolved, astrophysical questions that can only be answered through a far-infrared space mission and gives an overview of the technology required to answer them. The document discusses topics ranging from Solar System and Planet Formation, Our Galaxy and nearby Galaxies and Distant Galaxies and Galaxy Evolution. The FIR Roadmap was open to comments from the wider astronomical community following a presentation during EWASS 2016.
The terahertz and far-infrared (FIR) band, from approximately 0.3 THz to 15 THz (1 mm to 20 micron), is important for astrophysics as the thermal radiation of much of the universe peaks at these wavelengths and many spectral lines that trace the cycle of interstellar matter also lie within this band. However, water vapor renders the terrestrial atmosphere opaque to this frequency band over nearly all of the Earths surface. Early radiometric measurements below 1 THz at Dome A, the highest point of the cold and dry Antarctic ice sheet, suggest that it may offer the best possible access for ground-based astronomical observations in the terahertz and FIR band. To address uncertainty in radiative transfer modelling, we carried out measurements of atmospheric radiation from Dome A spanning the entire water vapor pure rotation band from 20 micron to 350 micron wavelength by a Fourier transform spectrometer. Our measurements expose atmospheric windows having significant transmission throughout this band. Furthermore, by combining our broadband spectra with auxiliary data on the atmospheric state over Dome A, we set new constraints on the spectral absorption of water vapor at upper tropospheric temperatures important for accurately modeling the terrestrial climate. In particular, we find that current spectral models significantly underestimate the H2O continuum absorption.