Do you want to publish a course? Click here

Solution of the dynamics of liquids in the large-dimensional limit

181   0   0.0 ( 0 )
 Added by Francesco Zamponi
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We obtain analytic expressions for the time correlation functions of a liquid of spherical particles, exact in the limit of high dimensions $d$. The derivation is long but straightforward: a dynamic virial expansion for which only the first two terms survive, followed by a change to generalized spherical coordinates in the dynamic variables leading to saddle-point evaluation of integrals for large $d$. The problem is thus mapped onto a one-dimensional diffusion in a perturbed harmonic potential with colored noise. At high density, an ergodicity-breaking glass transition is found. In this regime, our results agree with thermodynamics, consistently with the general Random First Order Transition scenario. The glass transition density is higher than the best known lower bound for hard sphere packings in large $d$. Because our calculation is, if not rigorous, elementary, an improvement in the bound for sphere packings in large dimensions is at hand.



rate research

Read More

We numerically study the relaxation dynamics of several glass-forming models to their inherent structures, following quenches from equilibrium configurations sampled across a wide range of temperatures. In a mean-field Mari-Kurchan model, we find that relaxation changes from a power-law to an exponential decay below a well-defined temperature, consistent with recent findings in mean-field $p$-spin models. By contrast, for finite-dimensional systems, the relaxation is always algebraic, with a non-trivial universal exponent at high temperatures crossing over to a harmonic value at low temperatures. We demonstrate that this apparent evolution is controlled by a temperature-dependent population of localised excitations. Our work unifies several recent lines of studies aiming at a detailed characterization of the complex potential energy landscape of glass-formers.
In this work, we analytically derive the exact closed dynamical equations for a liquid with short-ranged interactions in large spatial dimensions using the same statistical mechanics tools employed to analyze Brownian motion. Our derivation greatly simplifies the original path-integral-based route to these equations and provides new insight into the physical features associated with high-dimensional liquids and glass formation. Most importantly, our construction provides a facile route to the exact dynamical analysis of important related dynamical problems, as well as a means to devise cluster generalizations of the exact solution in infinite dimensions. This latter fact opens the door to the construction of increasingly accurate theories of vitrification in three-dimensional liquids.
We provide a compact derivation of the static and dynamic equations for infinite-dimensional particle systems in the liquid and glass phases. The static derivation is based on the introduction of an auxiliary disorder and the use of the replica method. The dynamic derivation is based on the general analogy between replicas and the supersymmetric formulation of dynamics. We show that static and dynamic results are consistent, and follow the Random First Order Transition scenario of mean field disordered glassy systems.
85 - Ludovic Berthier 2020
A theoretical treatment of deeply supercooled liquids is difficult because their properties emerge from spatial inhomogeneities that are self-induced, transient, and nanoscopic. I use computer simulations to analyse self-induced static and dynamic heterogeneity in equilibrium systems approaching the experimental glass transition. I characterise the broad sample-to-sample fluctuations of salient dynamic and thermodynamic properties in elementary mesoscopic systems. Findings regarding local lifetimes and distributions of dynamic heterogeneity are in excellent agreement with recent single molecule studies. Surprisingly broad thermodynamic fluctuations are also found, which correlate well with dynamics fluctuations, thus providing a local test of the thermodynamic origin of slow dynamics.
As in the preceding paper we aim at identifying the effective theory that describes the fluctuations of the local overlap with an equilibrium reference configuration close to a putative thermodynamic glass transition. We focus here on the case of finite-dimensional glass-forming systems, in particular supercooled liquids. The main difficulty for going beyond the mean-field treatment comes from the presence of diverging point-to-set spatial correlations. We introduce a variational low-temperature approximation scheme that allows us to account, at least in part, for the effect of these correlations. The outcome is an effective theory for the overlap fluctuations in terms of a random-field + random-bond Ising model with additional, power-law decaying, pair and multi-body interactions generated by the point-to-set correlations. This theory is much more tractable than the original problem. We check the robustness of the approximation scheme by applying it to a fully connected model already studied in the companion paper. We discuss the physical implications of this mapping for glass-forming liquids and the possibility it offers to determine the presence or not of a finite-temperature thermodynamic glass transition.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا