No Arabic abstract
We theoretically analyze surface magnetoplasmon modes in a compact circular cavity made of magneto-optical material under a static magnetic field. Such a cavity provides two different physical mechanisms for the surface wave to circulate in a unidirectional manner around the cavity, which offers more freedom to realize one-way surface wave. We also show the interaction between this one-way cavity and waveguides, through an example of a circulator, which lays the fundamental groundwork for potential nonreciprocal devices.
In this paper we introduce the concept of metasurfaces which are fully transparent when looking from one of the two sides of the sheet and have controllable functionalities for waves hitting the opposite side (one-way transparent sheets). We address the question on what functionalities are allowed, considering limitations due to reciprocity and passivity. In particular, we have found that it is possible to realize one-way transparent sheets which have the properties of a twist-polarizer in reflection or transmission when illuminated from the other side. Also one-way transparent sheets with controllable co-polarized reflection and transmission from the opposite side are feasible. We show that particular non-reciprocal magneto-electric coupling inside the sheet is necessary to realize lossless non-active transparent sheets. Furthermore, we derive the required polarizabilities of constituent dipole particles such that the layers composed of them form one-way transparent sheets. We conclude with design and simulations of an example of a nonreciprocal one-way transparent sheet functioning as an isolating twist-polarizer.
This paper proposes a new method to achieve robust optical pulling of particles by using an air waveguide sandwiched between two chiral hyperbolic metamaterials. The pulling force is induced by mode conversion between a pair of one-way-transport surface-arc waves supported on the two metamaterial surfaces of the waveguide. The surface arcs bridge the momentum gaps between isolated bulk equifrequency surfaces (EFSs) and are topologically protected by the nontrivial Chern numbers of the EFSs. When an incident surface-arc wave with a relatively small wavenumber $k_{x1}$ is scattered by the particle, a part of its energy is transferred to the other surface-arc mode with $k_{x2}(>k_{x1}). Because the electromagnetic wave acquires an additional forward momentum from the particle proportional to $k_{x2}-k_{x1}$ during this process, the particle will always be subjected to an optical pulling force irrespective of its material, shape and size. Since the chiral surface-arc waves are immune to backscattering from local disorders and the metamaterials are isotropic in the xy plane, robust optical pulling can be achieved in a curved air waveguide and can go beyond standard optical pulling mechanisms which are limited to pull in a straight-line.
Starting from first principles, we theoretically model the nonlinear temporal dynamics of gold-based plasmonic devices resulting from the heating of their metallic components. At optical frequencies, the gold susceptibility is determined by the interband transitions around the X,L points in the first Brillouin zone and thermo-modulational effects ensue from Fermi smearing of the electronic energy distribution in the conduction band. As a consequence of light-induced heating of the conduction electrons, the optical susceptibility becomes nonlinear. In this paper we describe, for the first time to our knowledge, the effects of the thermo-modulational nonlinearity of gold on the propagation of surface plasmon polaritons guided on gold nanowires. We introduce a novel nonlinear Schroedinger-like equation to describe pulse propagation in such nanowires, and we predict the appearance an intense spectral red-shift caused by the delayed thermal response.
Opto-mechanical interactions in planar photonic integrated circuits draw great interest in basic research and applications. However, opto-mechanics is practically absent in the most technologically significant photonics platform: silicon on insulator. Previous demonstrations required the under-etching and suspension of silicon structures. Here we present surface acoustic wave-photonic devices in silicon on insulator, up to 8 GHz frequency. Surface waves are launched through absorption of modulated pump light in metallic gratings and thermoelastic expansion. The surface waves are detected through photo-elastic modulation of an optical probe in standard race-track resonators. Devices do not involve piezo-electric actuation, suspension of waveguides or hybrid material integration. Wavelength conversion of incident microwave signals and acoustic true time delays up to 40 ns are demonstrated on-chip. Lastly, discrete-time microwave-photonic filters with up to six taps and 20 MHz wide passbands are realized using acoustic delays. The concept is suitable for integrated microwave-photonics signal processing
Phosphorene, the 2D material derived from black phosphorus, has recently attracted a lot of interest for its properties, suitable for applications in material science. In particular, the physical features and the prominent chemical reactivity on its surface render this nanolayered substrate particularly promising for electrical and optoelectronic applications. In addition, being a new potential ligand for metals, it opens the way for a new role of the inorganic chemistry in the 2D world, with special reference to the field of catalysis. The aim of this review is to summarize the state of the art in this subject and to present our most recent results in preparation, functionalization and use of phosphorene and its decorated derivatives. In particular, we discuss several key points, which are currently under investigation: the synthesis, the characterization by theoretical calculations, the high pressure behaviour of black phosphorus, as well as decoration with nanoparticles and encapsulation in polymers. Finally, device fabrication and electrical transport measurements are overviewed on the basis of recent literature and new results collected in our laboratories.