No Arabic abstract
Starting from first principles, we theoretically model the nonlinear temporal dynamics of gold-based plasmonic devices resulting from the heating of their metallic components. At optical frequencies, the gold susceptibility is determined by the interband transitions around the X,L points in the first Brillouin zone and thermo-modulational effects ensue from Fermi smearing of the electronic energy distribution in the conduction band. As a consequence of light-induced heating of the conduction electrons, the optical susceptibility becomes nonlinear. In this paper we describe, for the first time to our knowledge, the effects of the thermo-modulational nonlinearity of gold on the propagation of surface plasmon polaritons guided on gold nanowires. We introduce a novel nonlinear Schroedinger-like equation to describe pulse propagation in such nanowires, and we predict the appearance an intense spectral red-shift caused by the delayed thermal response.
A nonlinear model of modulational processes in the subsonic regime involving a linearly unstable wave and two linearly damped waves with different damping rates in a plasma is studied numerically. We compute the maximum Lyapunov exponent as a function of the damping rates in a two-parameter space, and identify shrimp-shaped self-similar structures in the parameter space. By varying the damping rate of the low-frequency wave, we construct bifurcation diagrams and focus on a saddle-node bifurcation and an interior crisis associated with a periodic window. We detect chaotic saddles and their stable and unstable manifolds, and demonstrate how the connection between two chaotic saddles via coupling unstable periodic orbits can result in a crisis-induced intermittency. The relevance of this work for the understanding of modulational processes observed in plasmas and fluids is discussed.
We report a measurement on the temporal response of a plasmonic antenna at the femtosecond time scale. The antenna consists of a square array of nanometer-size gold rods. We find that the far-field dispersion of light reflected from the plasmonic antenna is less than that of a 1.2 mm thick glass slide. Assuming a simple oscillating dipole model this implies that the near-field of the antenna may be used as an electron switch that responds faster than 20 fs. Alternatively, ultrafast electron diffraction may be used to investigate the near-field dynamics of the plasmonic antenna.
We study the propagation of 0.05-1 TW power, ultrafast laser pulses in a 10 meter long rubidium vapor cell. The central wavelength of the laser is resonant with the $D_2$ line of rubidium and the peak intensity in the $10^{12}-10^{14} ~W/cm^2$ range, enough to create a plasma channel with single electron ionization. We observe the absorption of the laser pulse for low energy, a regime of transverse confinement of the laser beam by the strong resonant nonlinearity for higher energies and the transverse broadening of the output beam when the nonlinearity is saturated due to full medium ionization. We compare experimental observations of transmitted pulse energy and transverse fluence profile with the results of computer simulations modeling pulse propagation. We find a qualitative agreement between theory and experiment that corroborates the validity of our propagation model. While the quantitative differences are substantial, the results show that the model can be used to interpret the observed phenomena in terms of self-focusing and channeling of the laser pulses by the saturable nonlinearity and the transparency of the fully ionized medium along the propagation axis.
The ultrafast response of metals to light is governed by intriguing non-equilibrium dynamics involving the interplay of excited electrons and phonons. The coupling between them gives rise to nonlinear diffusion behavior on ultrashort timescales. Here, we use scanning ultrafast thermo-modulation microscopy to image the spatio-temporal hot-electron diffusion in a thin gold film. By tracking local transient reflectivity with 20 nm and 0.25 ps resolution, we reveal two distinct diffusion regimes, consisting of an initial rapid diffusion during the first few picoseconds after optical excitation, followed by about 100-fold slower diffusion at longer times. We simulate the thermo-optical response of the gold film with a comprehensive three-dimensional model, and identify the two regimes as hot-electron and phonon-limited thermal diffusion, respectively.
Advances in integrated photonics open exciting opportunities for batch-fabricated optical sensors using high quality factor nanophotonic cavities to achieve ultra-high sensitivities and bandwidths. The sensitivity improves with higher optical power, however, localized absorption and heating within a micrometer-scale mode volume prominently distorts the cavity resonances and strongly couples the sensor response to thermal dynamics, limiting the sensitivity and hindering the measurement of broadband time-dependent signals. Here, we derive a frequency-dependent photonic sensor transfer function that accounts for thermo-optical dynamics and quantitatively describes the measured broadband optomechanical signal from an integrated photonic atomic-force-microscopy nanomechanical probe. Using this transfer function, the probe can be operated in the high optical power, strongly thermo-optically nonlinear regime, reaching a sensitivity of $approx$ 0.4 fm/Hz$^{1/2}$, an improvement of $approx 10times$ relative to the best performance in the linear regime. Counterintuitively, we discover that higher transduction gain and sensitivity are obtained with lower quality factor optical modes for low signal frequencies. Not limited to optomechanical transducers, the derived transfer function is generally valid for describing small-signal dynamic response of a broad range of technologically important photonic sensors subject to the thermo-optical effect.