Do you want to publish a course? Click here

Adaptive Mixtures of Factor Analyzers

66   0   0.0 ( 0 )
 Added by Heysem Kaya Dr
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

A mixture of factor analyzers is a semi-parametric density estimator that generalizes the well-known mixtures of Gaussians model by allowing each Gaussian in the mixture to be represented in a different lower-dimensional manifold. This paper presents a robust and parsimonious model selection algorithm for training a mixture of factor analyzers, carrying out simultaneous clustering and locally linear, globally nonlinear dimensionality reduction. Permitting different number of factors per mixture component, the algorithm adapts the model complexity to the data complexity. We compare the proposed algorithm with related automatic model selection algorithms on a number of benchmarks. The results indicate the effectiveness of this fast and robust approach in clustering, manifold learning and class-conditional modeling.

rate research

Read More

In this paper, we consider mixtures of two Mallows models for top-$k$ rankings, both with the same location parameter but with different scale parameters, i.e., a mixture of concentric Mallows models. This situation arises when we have a heterogeneous population of voters formed by two homogeneous populations, one of which is a subpopulation of expert voters while the other includes the non-expert voters. We propose efficient sampling algorithms for Mallows top-$k$ rankings. We show the identifiability of both components, and the learnability of their respective parameters in this setting by, first, bounding the sample complexity for the Borda algorithm with top-$k$ rankings and second, proposing polynomial time algorithm for the separation of the rankings in each component. Finally, since the rank aggregation will suffer from a large amount of noise introduced by the non-expert voters, we adapt the Borda algorithm to be able to recover the ground truth consensus ranking which is especially consistent with the expert rankings.
Mixtures of high dimensional Gaussian distributions have been studied extensively in statistics and learning theory. While the total variation distance appears naturally in the sample complexity of distribution learning, it is analytically difficult to obtain tight lower bounds for mixtures. Exploiting a connection between total variation distance and the characteristic function of the mixture, we provide fairly tight functional approximations. This enables us to derive new lower bounds on the total variation distance between pairs of two-component Gaussian mixtures that have a shared covariance matrix.
Graph convolutional networks (GCNs) are a widely used method for graph representation learning. To elucidate the capabilities and limitations of GCNs, we investigate their power, as a function of their number of layers, to distinguish between different random graph models (corresponding to different class-conditional distributions in a classification problem) on the basis of the embeddings of their sample graphs. In particular, the graph models that we consider arise from graphons, which are the most general possible parameterizations of infinite exchangeable graph models and which are the central objects of study in the theory of dense graph limits. We give a precise characterization of the set of pairs of graphons that are indistinguishable by a GCN with nonlinear activation functions coming from a certain broad class if its depth is at least logarithmic in the size of the sample graph. This characterization is in terms of a degree profile closeness property. Outside this class, a very simple GCN architecture suffices for distinguishability. We then exhibit a concrete, infinite class of graphons arising from stochastic block models that are well-separated in terms of cut distance and are indistinguishable by a GCN. These results theoretically match empirical observations of several prior works. To prove our results, we exploit a connection to random walks on graphs. Finally, we give empirical results on synthetic and real graph classification datasets, indicating that indistinguishable graph distributions arise in practice.
The estimation of an f-divergence between two probability distributions based on samples is a fundamental problem in statistics and machine learning. Most works study this problem under very weak assumptions, in which case it is provably hard. We consider the case of stronger structural assumptions that are commonly satisfied in modern machine learning, including representation learning and generative modelling with autoencoder architectures. Under these assumptions we propose and study an estimator that can be easily implemented, works well in high dimensions, and enjoys faster rates of convergence. We verify the behavior of our estimator empirically in both synthetic and real-data experiments, and discuss its direct implications for total correlation, entropy, and mutual information estimation.
Real-world data typically contain a large number of features that are often heterogeneous in nature, relevance, and also units of measure. When assessing the similarity between data points, one can build various distance measures using subsets of these features. Using the fewest features but still retaining sufficient information about the system is crucial in many statistical learning approaches, particularly when data are sparse. We introduce a statistical test that can assess the relative information retained when using two different distance measures, and determine if they are equivalent, independent, or if one is more informative than the other. This in turn allows finding the most informative distance measure out of a pool of candidates. The approach is applied to find the most relevant policy variables for controlling the Covid-19 epidemic and to find compact yet informative representations of atomic structures, but its potential applications are wide ranging in many branches of science.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا