Do you want to publish a course? Click here

Lower Bounds on the Total Variation Distance Between Mixtures of Two Gaussians

109   0   0.0 ( 0 )
 Added by Soumyabrata Pal
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Mixtures of high dimensional Gaussian distributions have been studied extensively in statistics and learning theory. While the total variation distance appears naturally in the sample complexity of distribution learning, it is analytically difficult to obtain tight lower bounds for mixtures. Exploiting a connection between total variation distance and the characteristic function of the mixture, we provide fairly tight functional approximations. This enables us to derive new lower bounds on the total variation distance between pairs of two-component Gaussian mixtures that have a shared covariance matrix.



rate research

Read More

208 - Egor Kosov 2021
In this paper we study bounds for the total variation distance between two second degree polynomials in normal random variables provided that they essentially depend on at least three variables.
271 - Gilles Pages 2020
In this paper, we focus on non-asymptotic bounds related to the Euler scheme of an ergodic diffusion with a possibly multiplicative diffusion term (non-constant diffusion coefficient). More precisely, the objective of this paper is to control the distance of the standard Euler scheme with decreasing step (usually called Unajusted Langevin Algorithm in the Monte-Carlo literature) to the invariant distribution of such an ergodic diffusion. In an appropriate Lyapunov setting and under uniform ellipticity assumptions on the diffusion coefficient, we establish (or improve) such bounds for Total Variation and L 1-Wasserstein distances in both multiplicative and additive and frameworks. These bounds rely on weak error expansions using Stochastic Analysis adapted to decreasing step setting.
We lower bound the complexity of finding $epsilon$-stationary points (with gradient norm at most $epsilon$) using stochastic first-order methods. In a well-studied model where algorithms access smooth, potentially non-convex functions through queries to an unbiased stochastic gradient oracle with bounded variance, we prove that (in the worst case) any algorithm requires at least $epsilon^{-4}$ queries to find an $epsilon$ stationary point. The lower bound is tight, and establishes that stochastic gradient descent is minimax optimal in this model. In a more restrictive model where the noisy gradient estimates satisfy a mean-squared smoothness property, we prove a lower bound of $epsilon^{-3}$ queries, establishing the optimality of recently proposed variance reduction techniques.
The TCP window size process appears in the modeling of the famous Transmission Control Protocol used for data transmission over the Internet. This continuous time Markov process takes its values in [0, infty), is ergodic and irreversible. The sample paths are piecewise linear deterministic and the whole randomness of the dynamics comes from the jump mechanism. The aim of the present paper is to provide quantitative estimates for the exponential convergence to equilibrium, in terms of the total variation and Wasserstein distances.
209 - Egor Kosov 2018
The paper provides an estimate of the total variation distance between distributions of polynomials defined on a space equipped with a logarithmically concave measure in terms of the $L^2$-distance between these polynomials.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا