Do you want to publish a course? Click here

Global survey of star clusters in the Milky Way IV. 63 new open clusters detected by proper motions

136   0   0.0 ( 0 )
 Added by Ralf-Dieter Scholz
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

AIMS: In their 1st extension to the Milky Way Star Clusters (MWSC) survey, Schmeja et al. applied photometric filters to the 2MASS to find new cluster candidates that were subsequently confirmed or rejected by the MWSC pipeline. To further extend the MWSC census, we aimed at discovering new clusters by conducting an almost global search in proper motion catalogues as a starting point. METHODS: We first selected high-quality samples from the PPMXL and UCAC4 for comparison and verification of the proper motions. For 441 circular proper motion bins (radius 15 mas/yr) within $pm$50 mas/yr, the sky outside a thin Galactic plane zone ($|b|$$<$5$^{circ}$) was binned in small areas (sky pixels) of 0.25$times$0.25 deg$^2$. Sky pixels with enhanced numbers of stars with a certain common proper motion in both catalogues were considered as cluster candidates. After visual inspection of the sky images, we built an automated procedure that combined these representations of the sky for neighbouring proper motion subsamples after a background correction. RESULTS: About half of our 692 candidates overlapped with known clusters (46 globular and 68 open clusters in the Galaxy, about 150 known clusters of galaxies) or the Magellanic Clouds. About 10% of our candidates turned out to be 63 new open clusters confirmed by the MWSC pipeline. They occupy predominantly the two inner Galactic quadrants and have apparent sizes and numbers of high-probable members slightly larger than those of the typically small MWSC clusters, whereas their other parameters (ages, distances, tidal radii) fall in the typical ranges. As our search aimed at finding compact clusters, we did not find new very nearby (extended) clusters. (abridged)



rate research

Read More

An earlier analysis of the Milky Way Star Cluster (MWSC) catalogue revealed an apparent lack of old (> 1 Gyr) open clusters in the solar neighbourhood (< 1 kpc). To fill this gap we undertook a search for hitherto unknown star clusters, assuming that the missing old clusters reside at high Galactic latitudes |b|> 20{deg}. We were looking for stellar density enhancements using a star count algorithm on the 2MASS point source catalogue. To increase the contrast between potential clusters and the field, we applied filters in colour-magnitude space according to typical colour-magnitude diagrams of nearby old open clusters. The subsequent comparison with lists of known objects allowed us to select thus far unknown cluster candidates. For verification they were processed with the standard pipeline used within the MWSC survey for computing cluster membership probabilities and for determining structural, kinematic, and astrophysical parameters. In total we discovered 782 density enhancements, 522 of which were classified as real objects. Among them 139 are new open clusters with ages 8.3 < log (t [yr]) < 9.7, distances d < 3 kpc, and distances from the Galactic plane 0.3 < Z < 1 kpc. This new sample has increased the total number of known high latitude open clusters by about 150%. Nevertheless, we still observe a lack of older nearby clusters up to 1 kpc from the Sun. This volume is expected to still contain about 60 unknown clusters that probably escaped our detection algorithm, which fails to detect sparse overdensities with large angular size.
We have collected high-dispersion echelle spectra of red giant members in the twelve open clusters (OCs) and derived stellar parameters and chemical abundances for 26 species by either line equivalent widths or synthetic spectrum analyses. We confirm the lack of an age-metallicity relation for OCs but argue that such a lack of trend for OCs arise from the limited coverage in metallicity compared to that of field stars which span a wide range in metallicity and age. We confirm that the radial metallicity gradient of OCs is steeper (flatter) for Rgc < 12 kpc (> 12 kpc). We demonstrate that the sample of clusters constituting a steep radial metallicity gradient of slope $-$0.052$pm$0.011 dex kpc$^{-1}$ at Rgc < 12 kpc are younger than 1.5 Gyr and located close to the Galactic midplane (|z| < 0.5 kpc) with kinematics typical of the thin disc. Whereas the clusters describing a shallow slope of $-$0.015$pm$0.007 dex kpc$^{-1}$ at Rgc > 12 kpc are relatively old, thick disc members with a striking spread in age and height above the midplane (0.5 < |z| < 2.5 kpc). Our investigation reveals that the OCs and field stars yield consistent radial metallicity gradients if the comparison is limited to samples drawn from the similar vertical heights. We argue via the computation of Galactic orbits that all the outer disc clusters were actually born inward of 12 kpc but the orbital eccentricity has taken them to present locations very far from their birthplaces.
The global survey of star clusters in the Milky Way (MWSC) is a comprehensive list of 3061 objects that provides, among other parameters, distances to clusters based on isochrone fitting. The Tycho-Gaia Astrometric Solution (TGAS) catalogue, which is a part of Gaia data release 1 (Gaia DR1), delivers accurate trigonometric parallax measurements for more than 2 million stars, including those in star clusters. We compare the open cluster photometric distance scale with the measurements given by the trigonometric parallaxes from TGAS to evaluate the consistency between these values. The average parallaxes of probable cluster members available in TGAS provide the trigonometric distance scale of open clusters, while the photometric scale is given by the distances published in the MWSC. Sixty-four clusters are suited for comparison as they have more than 16 probable members with parallax measurements in TGAS. We computed the average parallaxes of the probable members and compared these to the photometric parallaxes derived within the MWSC. We find a good agreement between the trigonometric TGAS-based and the photometric MWSC-based distance scales of open clusters, which for distances less than 2.3 kpc coincide at a level of about 0.1 mas with no dependence on the distance. If at all, there is a slight systematic offset along the Galactic equator between $30^circ$ and $160^circ$ galactic longitude.
90 - A.-N. Chene 2015
Context The ESO Public Survey VISTA Variables in the Via Lactea (VVV) provides deep multi-epoch infrared observations for an unprecedented 562 sq. degrees of the Galactic bulge and adjacent regions of the disk. Nearly 150 new open clusters and cluster candidates have been discovered in this survey. Aims We present the fourth article in a series of papers focussed on young and massive clusters discovered in the VVV survey. This article is dedicated to the cluster VVV CL041, which contains a new very massive star candidate, WR 62-2. Methods Following the methodology presented in the first paper of the series, wide-field, deep JHKs VVV observations, combined with new infrared spectroscopy, are employed to constrain fundamental parameters (distance, reddening, mass, age) of VVV CL041. Results We confirm that the cluster VVV CL041 is a young (less than 4 Myrs) and massive (3 +/- 2 x 10^3 Msol) cluster, and not a simple asterism. It is located at a distance of 4.2 +/- 0.9 kpc, and its reddening is A_V = 8.0 +/- 0.2 mag, which is slightly lower than the average for the young clusters towards the centre of the Galaxy. Spectral analysis shows that the most luminous star of the cluster, of the WN8h spectral type, is a candidate to have an initial mass larger than 100 Msol.
The all-sky Milky Way Star Clusters (MWSC) survey provides uniform and precise ages and other parameters for a variety of clusters in the Solar Neighbourhood. We construct the cluster age distribution, investigate its spatial variations, and discuss constraints on cluster formation scenarios of the Galactic disk during the last 5 Gyrs. Due to the spatial extent of the MWSC, we consider spatial variations of the age distribution along galactocentric radius $R_G$, and along $Z$-axis. For the analysis of the age distribution we use 2242 clusters, which all lie within roughly 2.5 kpc of the Sun. To connect the observed age distribution to the cluster formation history we build an analytical model based on simple assumptions on the cluster initial mass function and on the cluster mass-lifetime relation, fit it to the observations, and determine the parameters of the cluster formation law. Comparison with the literature shows that earlier results strongly underestimated the number of evolved clusters with ages $tgtrsim 100$ Myr. Recent studies based on all-sky catalogues agree better with our data, but still lack the oldest clusters with ages $tgtrsim 1$ Gyr. We do not observe a strong variation in the age distribution along $R_G$, though we find an enhanced fraction of older clusters ($t>1$ Gyr) in the inner disk. In contrast, the distribution strongly varies along $Z$. The high altitude distribution practically does not contain clusters with $t<1$ Gyr. With simple assumptions on the cluster formation history, cluster initial mass function and cluster lifetime we can reproduce the observations. Cluster formation rate and cluster lifetime are strongly degenerate, which does not allow us to disentangle different formation scenarios. In all cases the cluster formation rate is strongly declining with time, and the cluster initial mass function is very shallow at the high mass end. (abridged)
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا