Do you want to publish a course? Click here

Quantum Oscillations in Hole-Doped Cuprates

155   0   0.0 ( 0 )
 Added by Suchitra Sebastian
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

One of the leading challenges of condensed matter physics in the past few decades in an understanding of the high-temperature copper-oxide superconductors. While the d-wave character of the superconducting state is well understood, the normal state in the underdoped regime has eluded understanding. Here we review the past few years of quantum oscillation measurements performed in the underdoped cuprates that have culminated in an understanding of the normal ground state of these materials. A nodal electron pocket created by charge order is found to characterise the normal ground state in YBa2Cu3O6+x and is likely universal to a majority of the cuprate superconductors. An open question remains regarding the origin of the suppression of the antinodal density of states at the Fermi energy in the underdoped normal state, either from mainly charge correlations, or more likely, from mainly pairing and / or magnetic correlations that precede charge order.



rate research

Read More

138 - Tanmoy Das , R. S. Markiewicz , 2008
Angle-dependent studies of the gap function provide evidence for the coexistence of two distinct gaps in hole doped cuprates, where the gap near the nodal direction scales with the superconducting transition temperature $T_c$, while that in the antinodal direction scales with the pseudogap temperature. We present model calculations which show that most of the characteristic features observed in the recent angle-resolved photoemission spectroscopy (ARPES) as well as scanning tunneling microscopy (STM) two-gap studies are consistent with a scenario in which the pseudogap has a non-superconducting origin in a competing phase. Our analysis indicates that, near optimal doping, superconductivity can quench the competing order at low temperatures, and that some of the key differences observed between the STM and ARPES results can give insight into the superlattice symmetry of the competing order.
83 - J. R. Cooper 2021
It is argued that the unusual non-states-conserving fermion density of states, deduced from the specific heat of several families of hole-doped cuprates, points towards interpretations of the pseudogap based on the suppression of a Kondo or heavy fermion-like density of states by antiferromagnetic spin fluctuations.
165 - S. Lupi , D. Nicoletti , O. Limaj 2009
By studying the optical conductivity of BSLCO and YCBCO, we show that the metal-to-insulator transition (MIT) in these hole-doped cuprates is driven by the opening of a small gap at low T in the far infrared. Its width is consistent with the observations of Angle-Resolved Photoemission Spectroscopy in other cuprates, along the nodal line of the k-space. The gap forms as the Drude term turns into a far-infrared absorption, whose peak frequency can be approximately predicted on the basis of a Mott-like transition. Another band in the mid infrared softens with doping but is less sensitive to the MIT.
140 - T. M. Mishonov 2004
The purpose of the present Comment is to emphasize that the missing link has already been found, and the correlation reported by Pavarini et al., Phys. Rev. Lett. 87, 047003 (2001) [http://dx.doi.org/10.1103/PhysRevLett.87.047003] can be used as a crucial test for theoretical models of HTSC. Perhaps the simplest possible interpretation, though one could search for alternatives, is given within the framework of the Cu 4s-Cu 3d two-electron exchange theory of HTSC, J. Phys.: Condens. Matter 15, 4429 (2003) [http://dx.doi.org/10.1088/0953-8984/15/25/312].
88 - T. Schneider 2007
We consider the realistic case of a superconductor with a nonzero density of elastic scatterers, so that the normal state conductivity is finite. The quantum superconductor-metal (QSM) transition can then be tuned by varying either the attractive electron-electron interaction, the quenched disorder, or the applied magnetic field. We explore the consistency of the associated scaling relations, Tc ~ 1/lamda(0) ~ gap(0) ~ 1/gsi(0) ~ Hc2(0)^-0.5 and Tc(H) ~ 1/Lamda(0,H) ~ gap(0,h) ~ (Hc2(0)-H)^ 1/2, valid for all dimensions D > 2, with experimental data, in Al, C doped MgB2 and overdoped cuprates.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا