Do you want to publish a course? Click here

Turbulent Amplification and Structure of the Intracluster Magnetic Field

213   0   0.0 ( 0 )
 Added by Andrey Beresnyak R
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We compare DNS calculations of homogeneous isotropic turbulence with the statistical properties of intra-cluster turbulence from the Matryoshka Run (Miniati 2014) and find remarkable similarities between their inertial ranges. This allowed us to use the time dependent statistical properties of intra-cluster turbulence to evaluate dynamo action in the intra-cluster medium, based on earlier results from numerically resolved nonlinear magneto-hydrodynamic turbulent dynamo (Beresnyak 2012). We argue that this approach is necessary (a) to properly normalize dynamo action to the available intra-cluster turbulent energy and (b) to overcome the limitations of low Re affecting current numerical models of the intra-cluster medium. We find that while the properties of intra-cluster magnetic field are largely insensitive to the value and origin of the seed field, the resulting values for the Alfven speed and the outer scale of the magnetic field are consistent with current observational estimates, basically confirming the idea that magnetic field in todays galaxy clusters is a record of its past turbulent activity.



rate research

Read More

In this work we report a numerical study of the cosmic magnetic field amplification due to collisionless plasma instabilities. The collisionless magnetohydrodynamic equations derived account for the pressure anisotropy that leads, in specific conditions, to the firehose and mirror instabilities. We study the time evolution of seed fields in turbulence under the influence of such instabilities. An approximate analytical time evolution of magnetic field is provided. The numerical simulations and the analytical predictions are compared. We found that i) amplification of magnetic field was efficient in firehose unstable turbulent regimes, but not in the mirror unstable models, ii) the growth rate of the magnetic energy density is much faster than the turbulent dynamo, iii) the efficient amplification occurs at small scales. The analytical prediction for the correlation between the growth timescales with pressure anisotropy ratio is confirmed by the numerical simulations. These results reinforce the idea that pressure anisotropies - driven naturally in a turbulent collisionless medium, e.g. the intergalactic medium -, could efficiently amplify the magnetic field in the early Universe (post-recombination era), previous to the collapse of the first large-scale gravitational structures. This mechanism, though fast for the small scale fields ($sim$kpc scales), is however unable to provide relatively strong magnetic fields at large scales. Other mechanisms that were not accounted here (e.g., collisional turbulence once instabilities are quenched, velocity shear, or gravitationally induced inflows of gas into galaxies and clusters) could operate afterwards to build up large scale coherent field structures in the long time evolution.
We use adaptive-mesh magnetohydrodynamic simulations to study the effect of magnetic fields on ram pressure stripping of galaxies in the intracluster medium (ICM). Although the magnetic pressure in typical clusters is not strong enough to affect the gas mass loss rate from galaxies, magnetic fields can affect the morphology of stripped galaxies. ICM magnetic fields are draped around orbiting galaxies and aligned with their stripped tails. Magnetic fields suppress shear instabilities at the galaxy-ICM interface, and magnetized tails are smoother and narrower than tails in comparable hydrodynamic simulations in Vijayaraghavan & Ricker (2015). Orbiting galaxies stretch and amplify ICM magnetic fields, amplifying magnetic power spectra on $10 - 100$ kpc scales. Galaxies inject turbulent kinetic energy into the ICM via their turbulent wakes and $g$-waves. The magnetic energy and kinetic energy in the ICM increase up to $1.5 - 2$ Gyr of evolution, after which galaxies are stripped of most of their gas, and do not have sufficiently large gaseous cross sections to further amplify magnetic fields and inject turbulent kinetic energy. The increase in turbulent pressure due to galaxy stripping and generation of $g$-waves results in an increase in the turbulent volume fraction of the ICM. This turbulent kinetic energy is not a significant contributor to the overall ICM energy budget, but greatly impacts the evolution of the ICM magnetic field. Additionally, the effect of galaxies on magnetic fields can potentially be observed in high resolution Faraday rotation measure (RM) maps as small scale fluctuations in the RM structure.
65 - J. Donnert 2018
We review the present theoretical and numerical understanding of magnetic field amplification in cosmic large-scale structure, on length scales of galaxy clusters and beyond. Structure formation drives compression and turbulence, which amplify tiny magnetic seed fields to the microGauss values that are observed in the intracluster medium. This process is intimately connected to the properties of turbulence and the microphysics of the intra-cluster medium. Additional roles are played by merger induced shocks that sweep through the intra-cluster medium and motions induced by sloshing cool cores. The accurate simulation of magnetic field amplification in clusters still poses a serious challenge for simulations of cosmological structure formation. We review the current literature on cosmological simulations that include magnetic fields and outline theoretical as well as numerical challenges.
In the present-day Universe, magnetic fields pervade galaxy clusters, with strengths of a few microGauss obtained from Faraday Rotation. Evidence for cluster magnetic fields is also provided by Megaparsec-scale radio emission, namely radio halos and relics. These are commonly found in merging systems and are characterized by a steep radio spectrum. It is widely believed that magneto-hydrodynamical turbulence and shock-waves (re-)accelerate cosmic rays, producing halos and relics. The origin and the amplification of magnetic fields in clusters is not well understood. It has been proposed that turbulence drives a small-scaledynamo that amplifies seed magnetic fields (primordial and/or injected by galactic outflows, as active galactic nuclei, starbursts, or winds). At high redshift, radio halos are expected to be faint, due to the Inverse Compton losses and dimming effect with distance. Moreover, Faraday Rotation measurements are difficult to obtain. If detected, distant radio halosprovide an alternative tool to investigate magnetic field amplification. Here, we report LOFAR observations which reveal diffuse radio emission in massive clusters when the Universe was only half of its present age, with a sample occurrence fraction of about 50%. The high radio luminosities indicate that these clusters have similar magnetic field strengths to those in nearby clusters, and suggest that magnetic field amplification is fast during the first phases ofcluster formation.
We describe the initial implementation of magnetohydrodynamics (MHD) in our astrophysical simulation code genasis. Then, we present MHD simulations exploring the capacity of the stationary accretion shock instability (SASI) to generate magnetic fields by adding a weak magnetic field to an initially spherically symmetric fluid configuration that models a stalled shock in the post-bounce supernova environment. Upon perturbation and nonlinear SASI development, shear flows associated with the spiral SASI mode contributes to a widespread and turbulent field amplification mechanism. While the SASI may contribute to neutron star magnetization, these simulations do not show qualitatively new features in the global evolution of the shock as a result of SASI-induced magnetic field amplification.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا