Do you want to publish a course? Click here

Modeling Compositional Regression with uncorrelated and correlated errors: a Bayesian approach

66   0   0.0 ( 0 )
 Added by Ricardo Ehlers
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

Compositional data consist of known compositions vectors whose components are positive and defined in the interval (0,1) representing proportions or fractions of a whole. The sum of these components must be equal to one. Compositional data is present in different knowledge areas, as in geology, economy, medicine among many others. In this paper, we introduce a Bayesian analysis for compositional regression applying additive log-ratio (ALR) transformation and assuming uncorrelated and correlated errors. The Bayesian inference procedure based on Markov Chain Monte Carlo Methods (MCMC). The methodology is illustrated on an artificial and a real data set of volleyball.



rate research

Read More

This paper introduces the R package slm which stands for Stationary Linear Models. The package contains a set of statistical procedures for linear regression in the general context where the error process is strictly stationary with short memory. We work in the setting of Hannan (1973), who proved the asymptotic normality of the (normalized) least squares estimators (LSE) under very mild conditions on the error process. We propose different ways to estimate the asymptotic covariance matrix of the LSE, and then to correct the type I error rates of the usual tests on the parameters (as well as confidence intervals). The procedures are evaluated through different sets of simulations, and two examples of real datasets are studied.
Most research on regression discontinuity designs (RDDs) has focused on univariate cases, where only those units with a forcing variable on one side of a threshold value receive a treatment. Geographical regression discontinuity designs (GeoRDDs) extend the RDD to multivariate settings with spatial forcing variables. We propose a framework for analysing GeoRDDs, which we implement using Gaussian process regression. This yields a Bayesian posterior distribution of the treatment effect at every point along the border. We address nuances of having a functional estimand defind on a border with potentially intricate topology, particularly when defining and estimating causal estimands of the local average treatment effect (LATE). The Bayesian estimate of the LATE can also be used as a test statistic in a hypothesis test with good frequentist properties, which we validate using simulations and placebo tests. We demonstrate our methodology with a dataset of property sales in New York City, to assess whether there is a discontinuity in housing prices at the border between two school district. We find a statistically significant difference in price across the border between the districts with $p$=0.002, and estimate a 20% higher price on average for a house on the more desirable side.
We introduce a computational scheme for calculating the electronic structure of random alloys that includes electronic correlations within the framework of the combined density functional and dynamical mean-field theory. By making use of the particularly simple parameterization of the electron Greens function within the linearized muffin-tin orbitals method, we show that it is possible to greatly simplify the embedding of the self-energy. This in turn facilitates the implementation of the coherent potential approximation, which is used to model the substitutional disorder. The computational technique is tested on the Cu-Pd binary alloy system, and for disordered Mn-Ni interchange in the half-metallic NiMnSb.
113 - Hao Ran , Yang Bai 2021
Bayesian Additive Regression Trees(BART) is a Bayesian nonparametric approach which has been shown to be competitive with the best modern predictive methods such as random forest and Gradient Boosting Decision Tree.The sum of trees structure combined with a Bayesian inferential framework provide a accurate and robust statistic method.BART variant named SBART using randomized decision trees has been developed and show practical benefits compared to BART. The primary bottleneck of SBART is the speed to compute the sufficient statistics and the publicly avaiable implementation of the SBART algorithm in the R package is very slow.In this paper we show how the SBART algorithm can be modified and computed using single program,multiple data(SPMD) distributed computation with the Message Passing Interface(MPI) library.This approach scales nearly linearly in the number of processor cores, enabling the practitioner to perform statistical inference on massive datasets. Our approach can also handle datasets too massive to fit on any single data repository.We have made modification to this algorithm to make it capable to handle classfication problem which can not be done with the original R package.With data experiments we show the advantage of distributed SBART for classfication problem compared to BART.
Insurance industry is one of the most vulnerable sectors to climate change. Assessment of future number of claims and incurred losses is critical for disaster preparedness and risk management. In this project, we study the effect of precipitation on a joint dynamics of weather-induced home insurance claims and losses. We discuss utility and limitations of such machine learning procedures as Support Vector Machines and Artificial Neural Networks, in forecasting future claim dynamics and evaluating associated uncertainties. We illustrate our approach by application to attribution analysis and forecasting of weather-induced home insurance claims in a middle-sized city in the Canadian Prairies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا