Do you want to publish a course? Click here

Magnetic structure of the spin-1/2 frustrated quasi-one-dimensional antiferromagnet Cu3Mo2O9: Appearance of a partial disordered state

235   0   0.0 ( 0 )
 Added by Masashi Hase
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We investigated the crystal and magnetic structures of the spin-1/2 frustrated antiferromagnet Cu3Mo2O9 in which the spin system consists of antiferromagnetic chains and dimers. The space group at room temperature has been reported to be orthorhombic Pnma (No. 62). We infer that the space group above TN = 7.9 K is monoclinic P2_1/m (No. 11) from the observation of reflections forbidden in Pnma in x-ray powder diffraction experiments at room temperature. We determined the magnetic structure of Cu3Mo2O9 in neutron powder diffraction experiments. Magnetic moments on dimer sites lie in the ac planes. The magnitudes are 0.50 - 0.74 mu_B. Moments on chain sites may exist but the magnitudes are very small. The magnetic structure indicates that a partial disordered state is realized. We consider the origin of the magnetic structure, weak ferromagnetism, and electric polarization.



rate research

Read More

Magnetization measurements on single-crystal cubic SrCuTe$_2$O$_6$ with an applied magnetic field of along three inequivalent high symmetry directions $[100]$, $[110]$, and $[111]$ reveal weak magnetic anisotropy. The fits of the magnetic susceptibility to the result from a quantum Monte Carlo simulation on the Heisenberg spin-chain model, where the chain is formed via the dominant third-nearest-neighbor exchange interaction $J_3$, yield the intra-chain interaction $(J_3/k_B)$ between 50.12(7) K for the applied field along $[110]$ and 52.5(2) K along $[100]$ with about the same $g$-factor of 2.2. Single-crystal neutron diffraction unveils the transition to the magnetic ordered state as evidenced by the onset of the magnetic Bragg intensity at $T_textrm{N1}=5.25(9)$ K with no anomaly of the second transition at $T_textrm{N2}$ reported previously. Based on irreducible representation theory and magnetic space group analysis of powder and single-crystal neutron diffraction data, the magnetic structure in the Shubnikov space group $P4_132$, where the Cu$^{2+}$~$S=1/2$ spins antiferromagnetically align in the direction perpendicular to the spin chain, is proposed. The measured ordered moment of $0.52(6)~mu_B$, which represents 48% reduction from the expected value of $1~mu_B$, suggests the remaining influence of frustration resulting from the $J_1$ and $J_2$ bonds.
We investigated the magnetoelastic properties of the quasi-one-dimensional spin-1/2 frustrated magnet LiCuVO$_4$. Longitudinal-magnetostriction experiments were performed at 1.5 K in high magnetic fields of up to 60 T applied along the $b$ axis, i.e., the spin-chain direction. The magnetostriction data qualitatively resemble the magnetization results, and saturate at $H_{text{sat}} approx 54$ T, with a relative change in sample length of $Delta L/L approx 1.8times10^{-4}$. Remarkably, both the magnetostriction and the magnetization evolve gradually between $H_{text{c3}} approx 48$ T and $H_{text{sat}}$, indicating that the two quantities consistently detect the spin-nematic phase just below the saturation. Numerical analyses for a weakly coupled spin-chain model reveal that the observed magnetostriction can overall be understood within an exchange-striction mechanism. Small deviations found may indicate nontrivial changes in local correlations associated with the field-induced phase transitions.
The magnetic structure of the spin-chain antiferromagnet SrCo2V2O8 is determined by single-crystal neutron diffraction experiment. The system undergoes magnetic long range order below T_N = 4.96 K. The moment of 2.16{mu}_B per Co at 1.6 K in the screw chain running along the c axis alternates in the c-axis. The moments of neighboring screw chains are arranged antiferromagnetically along one in-plane axis and ferromagnetically along the other in-plane axis. This magnetic configuration breaks the 4-fold symmetry of the tetragonal crystal structure and leads to two equally populated magnetic twins with antiferromagnetic vector in the a or b axis. The very similar magnetic state to the isostructural BaCo2V2O8 warrants SrCo2V2O8 another interesting half-integer spin-chain antiferromagnet for investigation on quantum antiferromagnetism.
We report magnetic susceptibility (chi) and heat capacity Cp measurements along with ab-initio electronic structure calculations on PbCuTe2O6, a compound made up of a three dimensional 3D network of corner-shared triangular units. The presence of antiferromagnetic interactions is inferred from a Curie-Weiss temperature (theta_CW) of about -22 K from the chi(T) data. The magnetic heat capacity (Cm) data show a broad maximum at T^max ~ 1.15 K (i.e. T^max/theta_CW ~ 0.05), which is analogous to the the observed broad maximum in the Cm/T data of a hyper-Kagome system, Na4Ir3O8. In addition, Cm data exhibit a weak kink at T^* ~ 0.87 K. While the T^max is nearly unchanged, the T^* is systematically suppressed in an increasing magnetic field (H) up to 80 kOe. For H > 80 kOe, the Cm data at low temperatures exhibit a characteristic power-law (T^{alpha}) behavior with an exponent {alpha} slightly less than 2. Hopping integrals obtained from the electronic structure calculations show the presence of strongly frustrated 3D spin interactions along with non-negligible unfrustrated couplings. Our results suggest that PbCuTe2O6 is a candidate material for realizing a 3D quantum spin liquid state at high magnetic fields.
The compound KTi(SO4)2.H2O was recently reported as a quasi one-dimensional spin 1/2 compound with competing antiferromagnetic nearest neighbor exchange J1 and next-nearest neighbor exchange J2 along the chain with a frustration ratio alpha = J2/J1 ~ 0.29 [Chem. Mater. vol. 20, pg. 8 (2008)]. Here, we report a microscopically based magnetic model for this compound derived from density functional electronic structure calculations along with respective tight-binding models. Our calculations confirm the quasi one-dimensional nature of the system with antiferromagnetic J1 and J2, but suggest a significantly larger frustration ratio alpha ~ 1.1 +- 0.2. Based on transfer matrix renormalization group calculations we found that, due to an intrinsic symmetry of the J1-J2 model, our larger frustration ratio alpha is also consistent with the previous thermodynamic data. To resolve this issue, we propose performing high-field magnetization measurements and low temperature susceptibility measurements which should allow to precisely identify the frustration ratio alpha.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا