Do you want to publish a course? Click here

CO Core Candidates in the Gemini Molecular Cloud

315   0   0.0 ( 0 )
 Added by Yingjie Li
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present observations of a 4 squared degree area toward the Gemini cloud obtained using J = 1-0 transitions of $^{12}$CO, $^{13}$CO and C$^{18}$O. No C$^{18}$O emission was detected. This region is composed of 36 core candidates of $^{13}$CO. These core candidates have a characteristic diameter of 0.25 pc, excitation temperatures of 7.9 K, line width of 0.54 km s$^{-1}$ and a mean mass of 1.4 M$_{sun}$. They are likely to be starless core candidates, or transient structures, which probably disperse after $sim$10$^6$ yr.



rate research

Read More

We present the discovery of expanding spherical shells around low to intermediate-mass young stars in the Orion A giant molecular cloud using observations of $^{12}$CO (1-0) and $^{13}$CO (1-0) from the Nobeyama Radio Observatory 45-meter telescope. The shells have radii from 0.05 to 0.85 pc and expand outward at 0.8 to 5 km/s. The total energy in the expanding shells is comparable to protostellar outflows in the region. Together, shells and outflows inject enough energy and momentum to maintain the cloud turbulence. The mass-loss rates required to power the observed shells are two to three orders of magnitude higher than predicted for line-driven stellar winds from intermediate-mass stars. This discrepancy may be resolved by invoking accretion-driven wind variability. We describe in detail several shells in this paper and present the full sample in the online journal.
93 - Siyao Xu , Alex Lazarian 2020
Externally driven interstellar turbulence plays an important role in shaping the density structure in molecular clouds. Here we study the dynamical role of internally driven turbulence in a self-gravitating molecular cloud core. Depending on the initial conditions and evolutionary stages, we find that a self-gravitating core in the presence of gravity-driven turbulence can undergo constant, decelerated, and accelerated infall, and thus has various radial velocity profiles. In the gravity-dominated central region, a higher level of turbulence results in a lower infall velocity, a higher density, and a lower mass accretion rate. As an important implication of this study, efficient reconnection diffusion of magnetic fields against the gravitational drag naturally occurs due to the gravity-driven turbulence, without invoking externally driven turbulence.
We present far-infrared spectra and maps of the DR21 molecular cloud core between 196 and 671 microns, using the Herschel-SPIRE spectrometer. Nineteen molecular lines originating from CO, 13CO, HCO+ and H2O, plus lines of [N II] and [CI] were recorded, including several transitions not previously detected. The CO lines are excited in warm gas with Tkin ~ 125 K and nH2 ~ 7 x 10^4 cm-3, CO column density N(CO) ~ 3.5 x 10^18 cm^-2 and a filling factor of ~ 12%, and appear to trace gas associated with an outflow. The rotational temperature analysis incorporating observations from ground-based telescopes reveals an additional lower excitation CO compoment which has a temperature ~ 78 K and N(CO) ~ 4.5 x 10^21 cm^-2. Astronomy & Astrophysics HERSCHEL special Issue, in press.
A high density portion of the Orion Molecular Cloud 1 (OMC-1) contains the prominent, warm Kleinmann-Low (KL) nebula that is internally powered by an energetic event plus a farther region in which intermediate to high mass stars are forming. Its outside is affected by ultraviolet radiation from the neighboring Orion Nebula Cluster and forms the archetypical photon-dominated region (PDR) with the prominent bar feature. Its nearness makes the OMC-1 core region a touchstone for research on the dense molecular interstellar medium and PDRs. Using the Atacama Pathfinder Experiment telescope (APEX), we have imaged the line emission from the multiple transitions of several carbon monoxide (CO) isotopologues over the OMC-1 core region. Our observations employed the 2x7 pixel submillimeter CHAMP+ array to produce maps (~ 300 arcsec x 350 arcsec) of 12CO, 13CO, and C18O from mid-J transitions (J=6-5 to 8-7). We also obtained the 13CO and C18O J=3-2 images toward this region. The 12CO line emission shows a well-defined structure which is shaped and excited by a variety of phenomena, including the energetic photons from hot, massive stars in the nearby Orion Nebulas central Trapezium cluster, active high- and intermediate-mass star formation, and a past energetic event that excites the KL nebula. Radiative transfer modeling of the various isotopologic CO lines implies typical H2 densities in the OMC-1 core region of ~10^4-10^6 cm^-3 and generally elevated temperatures (~ 50-250 K). We estimate a warm gas mass in the OMC-1 core region of 86-285 solar masses.
143 - N. F. H. Tothill 2009
Fully sampled degree-scale maps of the 13CO 2-1 and CO 4-3 transitions toward three members of the Lupus Molecular Cloud Complex - Lupus I, III, and IV - trace the column density and temperature of the molecular gas. Comparison with IR extinction maps from the c2d project requires most of the gas to have a temperature of 8-10 K. Estimates of the cloud mass from 13CO emission are roughly consistent with most previous estimates, while the line widths are higher, around 2 km/s. CO 4-3 emission is found throughout Lupus I, indicating widespread dense gas, and toward Lupus III and IV. Enhanced line widths at the NW end and along the edge of the B228 ridge in Lupus I, and a coherent velocity gradient across the ridge, are consistent with interaction between the molecular cloud and an expanding HI shell from the Upper-Scorpius subgroup of the Sco-Cen OB Association. Lupus III is dominated by the effects of two HAe/Be stars, and shows no sign of external influence. Slightly warmer gas around the core of Lupus IV and a low line width suggest heating by the Upper-Centaurus-Lupus subgroup of Sco-Cen, without the effects of an HI shell.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا