Do you want to publish a course? Click here

Magnetic field-induced insulator-semimetal transition in a pyrochlore Nd2Ir2O7

127   0   0.0 ( 0 )
 Added by Kentaro Ueda
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We have investigated magneto-transport properties in a single crystal of pyrochore-type Nd2Ir2O7. The metallic conduction is observed on the antiferromagnetic domain walls of the all-in all-out type Ir-5d moment ordered insulating bulk state, that can be finely controlled by external magnetic field along [111]. On the other hand, an applied field along [001] induces the bulk phase transition from insulator to semimetal as a consequence of the field-induced modification of Nd-4f and Ir-5d moment configurations. A theoretical calculation consistently describing the experimentally observed features suggests a variety of exotic topological states as functions of electron correlation and Ir-5d moment orders which can be finely tuned by choice of rare-earth ion and by magnetic field, respectively.



rate research

Read More

74 - Y. Fang , F. Tang , Y. R. Ruan 2020
Synergic effect of electronic correlation and spin-orbit coupling is an emerging topic in topological materials. Central to this rapidly developing area are the prototypes of strongly correlated heavy-fermion systems. Recently, some Ce-based compounds are proposed to host intriguing topological nature, among which the electronic properties of CeSb are still under debate. In this paper, we report a comprehensive study combining magnetic and electronic transport measurements, and electronic band structure calculations of this compound to identify its topological nature. Quantum oscillations are clearly observed in both magnetization and magnetoresistance at high fields, from which one pocket with a nontrivial Berry phase is recognized. Angular-dependent magnetoresistance shows that this pocket is elongated in nature and corresponds to the electron pocket as observed in LaBi. Nontrivial electronic structure of CeSb is further confirmed by first-principle calculations, which arises from spin splitting in the fully polarized ferromagnetic state. These features indicate that magnetic-field can induce nontrivial topological electronic states in this prototypical Kondo semimetal.
We present magnetic characterization of a binary rare-earth intermetallic compound Er5Si3, crystallizing in Mn5Si3-type hexagonal structure, through magnetization, heat-capacity, electrical resistivity, and magnetoresistance measurements. Our investigations confirm that the compound exhibits two magnetic transitions with decreasing temperature, first one at 35 K and the second one at 15 K. The present results reveal that the second magnetic transition is a disorder-broadened first-order transition, as shown by thermal hysteresis in the measured data. Another important finding is that, below 15 K, there is a magnetic-field-induced transition with a hysteretic effect with the electrical resistance getting unusually enhanced at this transition and the magnetorsistance (MR) is found to exhibit intriguing magnetic-field dependence indicating novel magnetic phase-co-existence phenomenon. It thus appears that this compound is characterized by interesting magnetic anomalies in the temperature-magnetic-field phase diagram.
The capability to control the type and amount of charge carriers in a material and, in the extreme case, the transition from metal to insulator is one of the key challenges of modern electronics. By employing angle resolved photoemission spectroscopy (ARPES) we find that a reversible metal to insulator transition and a fine tuning of the charge carriers from electrons to holes can be achieved in epitaxial bilayer and single layer graphene by molecular doping. The effects of electron screening and disorder are also discussed. These results demonstrate that epitaxial graphene is suitable for electronics applications, as well as provide new opportunities for studying the hole doping regime of the Dirac cone in graphene.
Magnetic excitations in copper pyrimidine dinitrate, a spin-1/2 antiferromagnetic chain with alternating $g$-tensor and Dzyaloshinskii-Moriya interactions that exhibits a field-induced spin gap, are probed by means of pulsed-field electron spin resonance spectroscopy. In particular, we report on a minimum of the gap in the vicinity of the saturation field $H_{sat}=48.5$ T associated with a transition from the sine-Gordon region (with soliton-breather elementary excitations) to a spin-polarized state (with magnon excitations). This interpretation is fully confirmed by the quantitative agreement over the entire field range of the experimental data with the DMRG investigation of the spin-1/2 Heisenberg chain with a staggered transverse field.
The modulation of the electronic structure by an external magnetic field, which could further control the electronic transport behaviour of a system, is highly desired. Herein, an unconventional anomalous Hall effect (UAHE) was observed during magnetization process in the magnetic Weyl semimetal EuB6, resulting in an unconventional anomalous Hall-conductivity as high as ~1000 {Omega}-1 cm-1 and a Hall-angle up to ~10%. The system even only shows the UAHE, meaning that the anomalous Hall signal completely comes from the UAHE, with UAHE accounting for 100% and 87.5% of the AHE and the total Hall response, respectively. Theoretical calculations revealed that a largely enhanced Berry curvature was induced by the dynamic folding of the topological bands due to the spin-canting effect under external magnetic fields, which further produced the prominent UAHE even in a low-field magnetization process. These findings elucidate the connection between the non-collinear magnetism and the topological electronic state as well as reveal a novel manner to manipulate the transport behaviour of topological electrons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا