Do you want to publish a course? Click here

Magneto-optical response of graphene: probing substrate interactions

130   0   0.0 ( 0 )
 Added by Florian Libisch
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Magneto-optical transitions between Landau levels can provide precise spectroscopic information on the electronic structure and excitation spectra of graphene, enabling probes of substrate and many-body effects. We calculate the magneto-optical conductivity of large-size graphene flakes using a tight-binding approach. Our method allows us to directly compare the magneto-optical response of an isolated graphene flake with one aligned on hexagonal boron nitride giving rise to a periodic superlattice potential. The substrate interaction induces band gaps away from the Dirac point. In the presence of a perpendicular magnetic field Landau-level like structures emerge from these zero-field band gaps. The energy dependence of these satellite structures is, however, not easily accessible by conventional probes of the density of states by varying the back-gate voltage. Here we propose the magneto-optical probing of the superlattice perturbed spectrum. Our simulation includes magneto-excitonic effects in first-order perturbation theory. Our approach yields a quantitative explanation of recently observed Landau-level dependent renormalizations of the Fermi velocity.



rate research

Read More

The temporal dynamics of charge carriers determines the speed with which electronics can be realized in condensed matter, and their direct manipulation with optical fields promises electronic processing at unprecedented petahertz frequencies, consisting in a million-fold increase from state of the art technology. Graphene is of particular interest for the implementation of petahertz optoelectronics due to its unique transport properties, such as high carrier mobility with near-ballistic transport and exceptionally strong coupling to optical fields. The back action of carriers in response to an optical field is therefore of key importance towards applications. Here we investigate the instantaneous response of graphene to petahertz optical fields and elucidate the role of hot carriers on a sub-100 fs timescale. Measurements of the nonlinear response and its dependence on interaction time and field polarization allow us to identify the back action of hot carriers over timescales that are commensurate with the optical field. An intuitive picture is given for the carrier trajectories in response to the optical-field polarization state. We note that the peculiar interplay between optical fields and charge carriers in graphene may also apply to surface states in topological insulators with similar Dirac cone dispersion relations.
Graphene (G) is a two-dimensional material with exceptional sensing properties. In general, graphene gas sensors are produced in field effect transistor configuration on several substrates. The role of the substrates on the sensor characteristics has not yet been entirely established. To provide further insight on the interaction between ammonia molecules (NH3) and graphene devices, we report experimental and theoretical studies of NH3 graphene sensors with graphene supported on three substrates: SiO2, talc and hexagonal boron nitride (hBN). Our results indicate that the charge transfer from NH3 to graphene depends not only on extrinsic parameters like temperature and gas concentration, but also on the average distance between the graphene sheet and the substrate. We find that the average distance between graphene and hBN crystals is the smallest among the three substrates, and that graphene-ammonia gas sensors based on a G/hBN heterostructure exhibit the fastest recovery times for NH3 exposure and are slightly affected by wet or dry air environment. Moreover, the dependence of graphene-ammonia sensors on different substrates indicates that graphene sensors exhibit two different adsorption processes for NH3 molecules: one at the top of the graphene surface and another at its bottom side close to the substrate. Therefore, our findings show that substrate engineering is crucial to the development of graphene-based gas sensors and indicate additional routes for faster sensors.
The effect that dipole-dipole interactions have on the magneto-optical (MO) properties of magnetoplasmonic dimers is theoretically studied. The specific plasmonic versus magnetoplasmonic nature of the dimers metallic components and their specific location within the dimer plays a crucial role on the determination of these properties. We find that it is possible to generate an induced MO activity in a purely plasmonic component, even larger than that of the MO one, therefore dominating the overall MO spectral dependence of the system. Adequate stacking of these components may allow obtaining, for specific spectral regions, larger MO activities in systems with reduced amount of MO metal and therefore with lower optical losses. Theoretical results are contrasted and confirmed with experiments for selected structures.
The low-frequency magneto-optical absorption spectra of bilayer Bernal graphene are studied within the tight-binding model and gradient approximation. The interlayer interactions strongly affect the electronic properties of the Landau levels (LLs), and thus enrich the optical absorption spectra. According to the characteristics of the wave functions, the low-energy LLs can be divided into two groups. This division results in four kinds of optical absorption peaks with complex optical selection rules. Observing the experimental convergent absorption frequencies close to zero magnetic field might be useful and reliable in determining the values of several hopping integrals. The dependence of the optical absorption spectra on the field strength is investigated in detail, and the results differ considerably from those of monolayer graphene.
86 - L. F. Man , W. Xu , Y. M. Xiao 2021
The discovery of the hydrodynamic electron liquid (HEL) in graphene [D. Bandurin emph{et al.}, Science {bf 351}, 1055 (2016) and J. Crossno emph{et al.}, Science {bf 351}, 1058 (2016)] has marked the birth of the solid-state HEL which can be probed near room temperature in a table-top setup. Here we examine the terahertz (THz) magneto-optical (MO) properties of a graphene HEL. Considering the case where the magnetic length $l_B=sqrt{hbar/eB}$ is comparable to the mean-free path $l_{ee}$ for electron-electron interaction in graphene, the MO conductivities are obtained by taking a momentum balance equation approach on the basis of the Boltzmann equation. We find that when $l_Bsim l_{ee}$, the viscous effect in a HEL can weaken significantly the THz MO effects such as cyclotron resonance and Faraday rotation. The upper hybrid and cyclotron resonance magnetoplasmon modes $omega_pm$ are also obtained through the RPA dielectric function. The magnetoplasmons of graphene HEL at large wave-vector regime are affected by the viscous effect, and results in red-shifts of the magnetoplasmon frequencies. We predict that the viscosity in graphene HEL can affect strongly the magneto-optical and magnetoplasmonic properties, which can be verified experimentally.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا