Do you want to publish a course? Click here

Quantum simulation of conductivity plateaux and fractional quantum Hall effect using ultracold atoms

154   0   0.0 ( 0 )
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We analyze the role of impurities in the fractional quantum Hall effect using a highly controllable system of ultracold atoms. We investigate the mechanism responsible for the formation of plateaux in the resistivity/conductivity as a function of the applied magnetic field in the lowest Landau level regime. To this aim, we consider an impurity immersed in a small cloud of an ultracold quantum Bose gas subjected to an artificial magnetic field. We consider scenarios corresponding to experimentally realistic systems with gauge fields induced either by rotation or by appropriately designed laser fields. Systems of this kind are adequate to simulate quantum Hall effects in ultracold atom setups. We use exact diagonalization for few atoms and, to emulate transport equations, we analyze the time evolution of the system under a periodic perturbation. We provide a theoretical proposal to detect the up-to-now elusive presence of strongly correlated states related to fractional filling factors in the context of ultracold atoms. We analyze the conditions under which these strongly correlated states are associated with the presence of the resistivity/conductivity plateaux. Our main result is the presence of a plateau in a region, where the transfer between localized and non-localized particles takes place, as a necessary condition to maintain a constant value of the resistivity/conductivity as the magnetic field increases.

rate research

Read More

78 - Zhen Zheng , Z. D. Wang 2021
Magneto-optic effect is a fundamental but broad concept in magnetic mediums. Here we propose an arresting scheme for its quantum emulation using ultracold atoms. By representing the light-medium interaction in the quantum emulation manner, the artificial magneto-optic effect emerges under an entirely different mechanism from a conventional picture. The underlying polarization state extracted in the synthetic dimension displays a different response to various experimental setups. Notably, the magneto-optic rotation is related to the bulk topology in synthetic dimensions, and thus provides an unambiguous evidence for the desired topological magneto-optic effect, which has not been developed hitherto in ultracold atoms. This scheme is simple and feasible based on current experimental techniques. Implementation of the scheme is able to offer an intriguing platform for exploring topological magneto-optic effects and associated physics.
We employ the exact diagonalization method to analyze the possibility of generating strongly correlated states in two-dimensional clouds of ultracold bosonic atoms which are subjected to a geometric gauge field created by coupling two internal atomic states to a laser beam. Tuning the gauge field strength, the system undergoes stepwise transitions between different ground states, which we describe by analytical trial wave functions, amongst them the Pfaffian, the Laughlin, and a Laughlin quasiparticle many-body state. The adiabatic following of the center of mass movement by the lowest energy dressed internal state, is lost by the mixing of the second internal state. This mixture can be controlled by the intensity of the laser field. The non-adiabaticity is inherent to the considered setup, and is shown to play the role of circular asymmetry. We study its influence on the properties of the ground state of the system. Its main effect is to reduce the overlap of the numerical solutions with the analytical trial expressions by occupying states with higher angular momentum. Thus, we propose generalized wave functions arising from the Laughlin and Pfaffian wave function by including components, where extra Jastrow factors appear, while preserving important features of these states. We analyze quasihole excitations over the Laughlin and generalized Laughlin states, and show that they possess effective fractional charge and obey anyonic statistics. Finally, we study the energy gap over the Laughlin state as the number of particles is increased keeping the chemical potential fixed. The gap is found to decrease as the number of particles is increased, indicating that the observability of the Laughlin state is restricted to a small number of particles.
The simultaneous presence of two competing inter-particle interactions can lead to the emergence of new phenomena in a many-body system. Among others, such effects are expected in dipolar Bose-Einstein condensates, subject to dipole-dipole interaction and short-range repulsion. Magnetic quantum gases and in particular Dysprosium gases, offering a comparable short-range contact and a long-range dipolar interaction energy, remarkably exhibit such emergent phenomena. In addition an effective cancellation of mean-field effects of the two interactions results in a pronounced importance of quantum-mechanical beyond mean-field effects. For a weakly-dominant dipolar interaction the striking consequence is the existence of a new state of matter equilibrated by the balance between weak mean-field attraction and beyond mean-field repulsion. Though exemplified here in the case of dipolar Bose gases, this state of matter should appear also with other microscopic interactions types, provided a competition results in an effective cancellation of the total mean-field. The macroscopic state takes the form of so-called quantum droplets. We present the effects of a long-range dipolar interaction between these droplets.
We design an ingenious scheme to realize the Haldanes quantum Hall model without Landau level by using ultracold atoms trapped in an optical lattice. Three standing-wave laser beams are used to construct a wanted honeycomb lattice, where different on-site energies in two sublattices required in the Haldanes model can be implemented through tuning the phase of one of the laser beams. The staggered magnetic field is generated from the Berry phase associated with the atom moving in a region with other three standing-wave laser beams. Moreover, we establish a relation between the Hall conductivity and the equilibrium atomic density upon turning on a stimulated uniform magnetic field, which enables us to detect the topological Chern number with the density profile measurement technique that is typically used in ultracold atoms experiments.
In the last decade, quantum simulators, and in particular cold atoms in optical lattices, have emerged as a valuable tool to study strongly correlated quantum matter. These experiments are now reaching regimes that are numerically difficult or impossible to access. In particular they have started to fulfill a promise which has contributed significantly to defining and shaping the field of cold atom quantum simulations, namely the exploration of doped and frustrated quantum magnets and the search for the origins of high-temperature superconductivity in the fermionic Hubbard model. Despite many future challenges lying ahead, such as the need to further lower the experimentally accessible temperatures, remarkable studies have already emerged. Among them, spin-charge separation in one-dimensional systems has been demonstrated, extended-range antiferromagnetism in two-dimensional systems has been observed, connections to modern day large-scale numerical simulations were made, and unprecedented comparisons with microscopic trial wavefunctions have been carried out at finite doping. In many regards, the field has acquired new realms, putting old ideas to a new test and producing new insights and inspiration for the next generation of physicists. In the first part of this paper, we review the results achieved in cold atom realizations of the Fermi-Hubbard model in recent years. In the second part of this paper, with the stage set and the current state of the field in mind, we propose a new direction for cold atoms to explore: namely mixed-dimensional bilayer systems, where the charge motion is restricted to individual layers which remain coupled through spin-exchange. We propose a novel, strong pairing mechanism in these systems, which puts the formation of hole pairs at experimentally accessible, elevated temperatures within reach.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا