Do you want to publish a course? Click here

Thermoelectric Transport Coefficients in Mono-layer MoS2 and WSe2 Role of Substrate, Interface Phonons, Plasmon, and Dynamic Screening

120   0   0.0 ( 0 )
 Added by Uttam Singisetti
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The thermoelectric transport coefficients of electrons in two recently emerged transition metal dichalcogenides(TMD), MoS2 and WSe2, are calculated by solving Boltzmann Transport equation and coupled electrical and thermal current equations using Rode iterative technique. Scattering from localized donor impurities, acoustic deformation potential, longitudinal optical (LO) phonons, and substrate induced remote phonon modes are taken into account. Hybridization of TMD plasmon with remote phonon modes is investigated. Dynamic screening under linear polarization response is explored in TMDs sitting on a dielectric environment and the screened electron-phonon coupling matrix elements are calculated. The effect of screening and substrate induced remote phonon mediated scattering on the transport coefficients of the mentioned materials is explained. The transport coefficients are obtained for a varying range of temperature and doping density for three different types of substrates SiO2, Al2O3, and HfO2. The thermoelectric properties of interest including Seebeck coefficient, Peltier coefficient, and electronic thermal conductivity are calculated.



rate research

Read More

The emergence of transition metal dichalcogenides (TMDs) as 2D electronic materials has stimulated proposals of novel electronic and photonic devices based on TMD heterostructures. Here we report the determination of band offsets in TMD heterostructures by using microbeam X-ray photoelectron spectroscopy ({mu}-XPS) and scanning tunneling microscopy/spectroscopy (STM/S). We determine a type-II alignment between $textrm{MoS}_2$ and $textrm{WSe}_2$ with a valence band offset (VBO) value of 0.83 eV and a conduction band offset (CBO) of 0.76 eV. First-principles calculations show that in this heterostructure with dissimilar chalcogen atoms, the electronic structures of $textrm{WSe}_2$ and $textrm{MoS}_2$ are well retained in their respective layers due to a weak interlayer coupling. Moreover, a VBO of 0.94 eV is obtained from density functional theory (DFT), consistent with the experimental determination.
184 - Thomas Garandel 2018
The ability to perform efficient electrical spin injection from ferromagnetic metals into two-dimensional semiconductor crystals based on transition metal dichalcogenide monolayers is a prerequisite for spintronic and valleytronic devices using these materials. Here, the hcp Co(0001)/MoS2 interface electronic structure is investigated by first-principles calculations based on the density functional theory. In the lowest energy configuration of the hybrid system after optimization of the atomic coordinates, we show that interface sulfur atoms are covalently bound to one, two or three cobalt atoms. A decrease of the Co atom spin magnetic moment is observed at the interface, together with a small magnetization of S atoms. Mo atoms also hold small magnetic moments which can take positive as well as negative values. The charge transfers due to covalent bonding between S and Co atoms at the interface have been calculated for majority and minority spin electrons and the connections between these interface charge transfers and the induced magnetic properties of the MoS2 layer are discussed. Band structure and density of states of the hybrid system are calculated for minority and majority spin electrons, taking into account spin-orbit coupling. We demonstrate that MoS2 bound to the Co contact becomes metallic due to hybridization between Co d and S p orbitals. For this metallic phase of MoS2, a spin polarization at the Fermi level of 16 % in absolute value is calculated, that could allow spin injection into the semiconducting MoS2 monolayer channel. Finally, the symmetry of the majority and minority spin electron wave functions at the Fermi level in the Co-bound metallic phase of MoS2 and the orientation of the border between the metallic and semiconducting phases of MoS2 are investigated, and their impact on spin injection into the MoS2 channel is discussed.
The valley degree of freedom in two-dimensional (2D) crystals recently emerged as a novel information carrier in addition to spin and charge. The intrinsic valley lifetime in 2D transition metal dichalcoginides (TMD) is expected to be remarkably long due to the unique spin-valley locking behavior, where the inter-valley scattering of electron requires simultaneously a large momentum transfer to the opposite valley and a flip of the electron spin. The experimentally observed valley lifetime in 2D TMDs, however, has been limited to tens of nanoseconds so far. Here we report efficient generation of microsecond-long lived valley polarization in WSe2/MoS2 heterostructures by exploiting the ultrafast charge transfer processes in the heterostructure that efficiently creates resident holes in the WSe2 layer. These valley-polarized holes exhibit near unity valley polarization and ultralong valley lifetime: we observe a valley-polarized hole population lifetime of over 1 us, and a valley depolarization lifetime (i.e. inter-valley scattering lifetime) over 40 us at 10 Kelvin. The near-perfect generation of valley-polarized holes in TMD heterostructures with ultralong valley lifetime, orders of magnitude longer than previous results, opens up new opportunities for novel valleytronics and spintronics applications.
We report first-principles calculations of the structural and vibrational properties of the synthesized two-dimensional van der Waals heterostructures formed by single-layers dichalcogenides MoSe2 and WSe2. We show that, when combining these systems in a periodic two-dimensional heterostructures, the intrinsic phonon characteristics of the free-standing constituents are to a large extent preserved but, furthermore, exhibit shear and breathing phonon modes that are not present in the individual building blocks. These peculiar modes depend strongly on the weak vdW forces and has a great contibution to the thermal properties of the layered materials. Besides these features, the departure of flexural modes of heterobilayer from the ones of its monolayer parents are also found.
The two-dimensional semiconductor MoS2 in its mono- and few-layer form is expected to have a significant exciton binding energy of several 100 meV, leading to the consensus that excitons are the primary photoexcited species. Nevertheless, even single layers show a strong photovoltaic effect and work as the active material in high sensitivity photodetectors, thus indicating efficient charge carrier photogeneration (CPG). Here we use continuous wave photomodulation spectroscopy to identify the optical signature of long-lived charge carriers and femtosecond pump-probe spectroscopy to follow the CPG dynamics. We find that intitial photoexcitation yields a branching between excitons and charge carriers, followed by excitation energy dependent hot exciton dissociation as an additional CPG mechanism. Based on these findings, we make simple suggestions for the design of more efficient MoS2 photovoltaic and photodetector devices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا