Do you want to publish a course? Click here

A Directional Gamma-Ray Detector Based on Scintillator Plates

111   0   0.0 ( 0 )
 Added by Audrey Macleod
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

A simple device for determining the azimuthal location of a source of gamma radiation, using ideas from astrophysical gamma-ray burst detection, is described. A compact and robust detector built from eight identical modules, each comprising a plate of CsI(Tl) scintillator coupled to a photomultiplier tube, can locate a point source of gamma rays with degree-scale precision by comparing the count rates in the different modules. Sensitivity to uniform environmental background is minimal.



rate research

Read More

The detectors based on the liquid scintillator (LS) monitored by an array of photo-multiplier tubes (PMT) are often used in low energy experiments such as neutrino oscillation studies and search for dark matter. Detectors of this kind operate in an energy range spanning from hundreds of keV to a few GeV providing a few percent resolution at energies above 1 MeV and allowing to observe fine spectral features. This article gives a brief overview of relevant physical processes and introduces a new universal simulation tool LSMC (Liquid Scintillator Monte Carlo) for simulation of LS-based detectors equipped with PMT arrays. This tool is based on the Geant4 framework and provides supplementing functionality for ease of configuration and comprehensive output. The usage of LSMC is illustrated by modeling and optimization of a compact detector prototype currently being built at Baksan Neutrino Observatory.
We present a scintillator based detector able to measure both spatial and energy information at High repetition rate (HRR) with a relatively simple design. It has been built at the Center of Pulsed Laser (CLPU) in Salamanca and tested in the proton accelerator at the Centro de Micro-Analisis de Materiales (CMAM) in Madrid. The detector has been demonstrated to work in HRR mode by reproducing the performance of the radiochromic film detector. It represents a new class of on-line detectors for Laser-plasma physics experiments in the new emerging High Power and HRR laser systems.
We present a characterization of a small (9-liter) and mobile 0.1% 6Li-doped pulse-shape-sensitive plastic scintillator antineutrino detector called SANDD (Segmented AntiNeutrino Directional Detector), constructed for the purpose of near-field reactor monitoring with sensitivity to antineutrino direction. SANDD comprises three different types of module. A detailed Monte Carlo simulation code was developed to match and validate the performance of each of the three modules. The combined model was then used to produce a prediction of the performance of the entire detector. Analysis cuts were established to isolate antineutrino inverse beta decay events while rejecting large fraction of backgrounds. The neutron and positron detection efficiencies are estimated to be 34.8% and 80.2%, respectively, while the coincidence detection efficiency is estimated to be 71.7%, resulting in inverse beta decay detection efficiency of 20.05 +/- 0.2%(stat.) +/- 2.1%(syst.). The predicted directional sensitivity of SANDD produces an uncertainty of 20 degree in the azimuthal direction per 100 detected antineutrino events.
The DANSS project is aimed at creating a relatively compact neutrino spectrometer which does not contain any flammable or other dangerous liquids and may therefore be located very close to the core of an industrial power reactor. As a result, it is expected that high neutrino flux would provide about 15,000 IBD interactions per day in the detector with a sensitive volume of 1 m$^3$. High segmentation of the plastic scintillator will allow to suppress a background down to a 1% level. Numerous tests performed with a simplified pilot prototype DANSSino under a 3 GW$_{th}$ reactor of the Kalinin NPP have demonstrated operability of the chosen design. The DANSS detector surrounded with a composite shield is movable by means of a special lifting gear, varying the distance to the reactor core in a range from 10 m to 12 m. Due to this feature, it could be used not only for the reactor monitoring, but also for fundamental research including short-range neutrino oscillations to the sterile state. Supposing one-year measurement, the sensitivity to the oscillation parameters is expected to reach a level of $sin^2(2theta)$ ~ 0.005 with $Delta m^2 subset (0.02-5.0)$ eV$^2$.
84 - Y. Abreu , Y. Amhis , L. Arnold 2017
The next generation of very-short-baseline reactor experiments will require compact detectors operating at surface level and close to a nuclear reactor. This paper presents a new detector concept based on a composite solid scintillator technology. The detector target uses cubes of polyvinyltoluene interleaved with $^6$LiF:ZnS(Ag) phosphor screens to detect the products of the inverse beta decay reaction. A multi-tonne detector system built from these individual cells can provide precise localisation of scintillation signals, making efficient use of the detector volume. Monte Carlo simulations indicate that a neutron capture efficiency of over 70% is achievable with a sufficient number of $^6$LiF:ZnS(Ag) screens per cube and that an appropriate segmentation enables a measurement of the positron energy which is not limited by gamma-ray leakage. First measurements of a single cell indicate that a very good neutron-gamma discrimination and high neutron detection efficiency can be obtained with adequate triggering techniques. The light yield from positron signals has been measured, showing that an energy resolution of 14%/$sqrt{E({mathrm{MeV}})}$ is achievable with high uniformity. A preliminary neutrino signal analysis has been developed, using selection criteria for pulse shape, energy, time structure and energy spatial distribution and showing that an antineutrino efficiency of 40% can be achieved. It also shows that the fine segmentation of the detector can be used to significantly decrease both correlated and accidental backgrounds.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا