Do you want to publish a course? Click here

Magnetic chains on a triplet superconductor

140   0   0.0 ( 0 )
 Added by Pedro Sacramento
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The topological state of a two-dimensional triplet superconductor may be changed by an appropriate addition of magnetic impurities. A ferromagnetic magnetic chain at the surface of a superconductor with spin-orbit coupling may eliminate the edge states of a finite system giving rise to localized zero modes at the edges of the chain. The coexistence/competition between the two types of zero modes is considered. The reduction of the system to an effective $1d$ system gives partial information on the topological properties but the study of the two sets of zero modes requires a two-dimensional treatment. Increasing the impurity density from a magnetic chain to magnetic islands leads to a finite Chern number. At half-filling small concentrations are enough to induce chiral modes.



rate research

Read More

We propose an easy-to-build easy-to-detect scheme for realizing Majorana fermions at the ends of a chain of magnetic atoms on the surface of a superconductor. Model calculations show that such chains can be easily tuned between trivial and topological ground state. In the latter, spatial resolved spectroscopy can be used to probe the Majorana fermion end states. Decoupled Majorana bound states can form even in short magnetic chains consisting of only tens of atoms. We propose scanning tunneling microscopy as the ideal technique to fabricate such systems and probe their topological properties.
180 - K. Machida , M. Ichioka 2007
The field dependence of the specific heat gamma(H) at lower temperatures in Sr2RuO4 is analyzed by solving microscopic Eilenberger equation numerically. We find that systematic gamma(H) behaviors from a concaved sqrt H to a convex H^{alpha} (alpha>1) under H orientation change are understood by taking account of the Pauli paramagnetic effect. The magnetizations are shown to be consistent with it. This implies either a singlet pairing or a triplet one with d-vector locked in the basal plane, which allows us to explain other mysteries of this compound in a consistent way.
Motivated by a recent angle-resolved thermal conductivity experiment that shows a twofold gap symmetry in the high-field and low-temperature C phase in the heavy-fermion superconductor UPt$_3$, we group-theoretically identify the pairing functions as $E_{1u}$ with the $f$-wave character for all the three phases. The pairing functions are consistent with the observation as well as with a variety of existing measurements. By using a microscopic quasi-classical Eilenberger equation with the identified triplet pairing function under applied fields, we performed detailed studies of the vortex structures for three phases, including the vortex lattice symmetry, the local density of states, and the internal field distribution. These quantities are directly measurable experimentally by SANS, STM/STS, and NMR, respectively. It is found that, in the B phase of low $H$ and low $T$, the double-core vortex is stabilized over a singular vortex. In the C phase, thermal conductivity data are analyzed to confirm the gap structure proposed. We also give detailed comparisons of various proposed pair functions, concluding that the present scenario of $E_{1u}$ with the $f$-wave, which is an analogue to the triplet planar state, is better than the $E_{2u}$ or $E_{1g}$ scenario. Finally, we discuss the surface topological aspects of Majorana modes associated with the $E_{1u}^f$ state of planar like features.
We study a novel type of coupling between spin and orbital degrees of freedom which appears at triplet superconductor-ferromagnet interfaces. Using a self-consistent spatially-dependent mean-field theory, we show that increasing the angle between the ferromagnetic moment and the triplet vector order parameter enhances or suppresses the p-wave gap close to the interface, according as the gap antinodes are parallel or perpendicular to the boundary, respectively. The associated change in condensation energy establishes an orbitally-dependent preferred orientation for the magnetization. When both gap components are present, as in a chiral superconductor, we observe a first-order transition between different moment orientations as a function of the exchange field strength.
Recent experiments show strong evidences of nematic triplet superconductivity in doped Bi$_2$Se$_3$ and in Bi$_2$Te$_3$ thin film on a superconducting substrate, but with varying identifications of the direction of the $d$-vector of the triplet that is essential to the topology of the underlying superconductivity. Here we show that the $d$-vector can be directly visualized by scanning tunneling measurements: At subgap energies the $d$-vector is along the leading peak wave-vector in the quasi-particle-interference pattern for potential impurities, and counter-intuitively along the elongation of the local density-of-state profile of the vortex. The results provide a useful guide to experiments, the result of which would in turn pose a stringent constraint on the pairing symmetry.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا