Do you want to publish a course? Click here

Majorana fermions in chains of magnetic atoms on a superconductor

250   0   0.0 ( 0 )
 Added by Stevan Nadj-Perge
 Publication date 2013
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose an easy-to-build easy-to-detect scheme for realizing Majorana fermions at the ends of a chain of magnetic atoms on the surface of a superconductor. Model calculations show that such chains can be easily tuned between trivial and topological ground state. In the latter, spatial resolved spectroscopy can be used to probe the Majorana fermion end states. Decoupled Majorana bound states can form even in short magnetic chains consisting of only tens of atoms. We propose scanning tunneling microscopy as the ideal technique to fabricate such systems and probe their topological properties.



rate research

Read More

We consider a superconducting film exchange-coupled to a close-by chiral magnetic layer and study how magnetic skyrmions can induce the formation of Majorana bound states (MBS) in the superconductor. Inspired by a proposal by Yang et al. [Phys. Rev. B 93, 224505 (2016)], which suggested MBS in skyrmions of even winding number, we explore whether such skyrmions could result from a merger of ordinary skyrmions. We conclude that the formation of higher-winding skyrmions is not realistic in chiral magnets. Subsequently, we present a possibility to obtain MBS from realistic skyrmions of winding number one, if a skyrmion-vortex pair is formed instead of a bare skyrmion. Specifically, we show that MBS are supported in a pair of a circular skyrmion and a vortex which both have a winding number of one. We back up our analytical prediction with results from numerical diagonalization and obtain the spatial profile of the MBS. In light of recent experimental progress on the manipulation of skyrmions, such systems are promising candidates to achieve direct spatial control of MBS.
We study multiband semiconducting nanowires proximity-coupled with an s-wave superconductor and calculate the topological phase diagram as a function of the chemical potential and magnetic field. The non-trivial topological state corresponds to a superconducting phase supporting an odd number of pairs of Majorana modes localized at the ends of the wire, whereas the non-topological state corresponds to a superconducting phase with no Majoranas or with an even number of pairs of Majorana modes. Our key finding is that multiband occupancy not only lifts the stringent constraint of one-dimensionality, but also allows having higher carrier density in the nanowire. Consequently, multiband nanowires are better-suited for stabilizing the topological superconducting phase and for observing the Majorana physics. We present a detailed study of the parameter space for multiband semiconductor nanowires focusing on understanding the key experimental conditions required for the realization and detection of Majorana fermions in solid-state systems. We include various sources of disorder and characterize their effects on the stability of the topological phase. Finally, we calculate the local density of states as well as the differential tunneling conductance as functions of external parameters and predict the experimental signatures that would establish the existence of emergent Majorana zero-energy modes in solid-state systems.
163 - Jay D. Sau , Sumanta Tewari 2011
We show that carbon nanotubes (CNT) are good candidates for realizing one-dimensional topological superconductivity with Majorana fermions localized near the end points. The physics behind topological superconductivity in CNT is novel and is mediated by a recently reported curvature-induced spin-orbit coupling which itself has a topological origin. In addition to the spin-orbit coupling, an important new requirement for a robust topological state is broken chirality symmetry about the nanotube axis. We use topological arguments to show that, for recently realized strengths of spin-orbit coupling and broken chirality symmetry, a robust topological gap of around 500 mK is achievable in carbon nanotubes.
139 - P.D. Sacramento 2015
The topological state of a two-dimensional triplet superconductor may be changed by an appropriate addition of magnetic impurities. A ferromagnetic magnetic chain at the surface of a superconductor with spin-orbit coupling may eliminate the edge states of a finite system giving rise to localized zero modes at the edges of the chain. The coexistence/competition between the two types of zero modes is considered. The reduction of the system to an effective $1d$ system gives partial information on the topological properties but the study of the two sets of zero modes requires a two-dimensional treatment. Increasing the impurity density from a magnetic chain to magnetic islands leads to a finite Chern number. At half-filling small concentrations are enough to induce chiral modes.
Motivated by a recent experiment in which zero-bias peaks have been observed in scanning tunneling microscopy (STM) experiments performed on chains of magnetic atoms on a superconductor, we show, by generalizing earlier work, that a multichannel ferromagnetic wire deposited on a spin-orbit coupled superconducting substrate can realize a non-trivial chiral topological superconducting state with Majorana bound states localized at the wire ends. The non-trivial topological state occurs for generic parameters requiring no fine tuning, at least for very large exchange spin splitting in the wire. We theoretically obtain the signatures which appear in the presence of an arbitrary number of Majorana modes in multi-wire systems incorporating the role of finite temperature, finite potential barrier at the STM tip, and finite wire length. These signatures are presented in terms of spatial profiles of STM differential conductance which clearly reveal zero energy Majorana end modes and the prediction of a multiple Majorana based fractional Josephson effect. A substantial part of this work is devoted to a detailed critical comparison between our theory and the recent STM experiment claiming the observation of Majorana fermions. The conclusion of this detailed comparison is that although the experimental observations are not manifestly inconsistent with our theoretical findings, the very small topological superconducting gap and the very high temperature of the experiment make it impossible to decisively verify the existence of a localized Majorana zero mode, as the spectral weight of the Majorana mode is necessarily spread over a very broad energy regime exceeding the size of the gap. Thus, although the experimental findings are indeed consistent with a highly broadened and weakened Majorana zero bias peak, much lower experimental temperatures are necessary for any definitive conclusion.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا