Do you want to publish a course? Click here

The Kapteyn moving group is not tidal debris from $omega$ Centauri

113   0   0.0 ( 0 )
 Added by Camila Navarrete
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Kapteyn moving group has been postulated as tidal debris from $omega$ Centauri. If true, members of the group should show some of the chemical abundance patterns known for stars in the cluster. We present an optical and near-infrared high-resolution, high-S/N spectroscopic study of 14 stars of the Kapteyn group, plus 10 additional stars (the $omega$ Cen-group) that, while not listed as members of the Kapteyn group as originally defined, have been nevertheless associated dynamically with $omega$ Centauri. Abundances for Na, O, Mg, Al, Ca and Ba were derived from the optical spectra, while the strength of the chromospheric He I 10830 {AA} line is studied as a possible helium abundance indicator. The resulting Na-O and Mg-Al patterns for stars of the combined Kapteyn and $omega$ Cen-group samples do not resemble those of $omega$ Centauri, and are not different from those of field stars of the Galactic halo. The distribution of equivalent widths of the He I 10830 {AA} line is consistent with that found among non-active field stars. Therefore, no evidence is found for second-generation stars within our samples, which most likely rules out a globular-cluster origin. Moreover, no hint of the unique Ba-overabundance at the metal-rich end, well-established for $omega$ Centauri stars, is seen among stars of the combined samples. Because this specific Ba pattern is present in $omega$ Centauri irrespective of stellar generation, this would rule out the possibility that our entire sample might be composed of only first generation stars from the cluster. Finally, for the stars of the Kapteyn group, the possibility of an origin in the hypothetical $omega$ Centauris parent galaxy is disfavored by the different run of $alpha$-elements with metallicity between our targets and stars from present-day dwarf galaxies.



rate research

Read More

The HR 1614 overdensity in velocity space and has for a long time been known as an old (~2 Gyr) and metal-rich ([Fe/H]~0.2) nearby moving group that has a dissolving cluster origin. The existence of such old and metal-rich groups in the solar vicinity is quite unexpected since the vast majority of nearby moving groups are known to be young. In the light of new and significantly larger data sets we aim to re-investigate the properties and origin of the HR 1614 moving group. To identify and characterise the HR 1614 moving group we use astrometric data from Gaia DR2; distances, extinction, and reddening corrections from the StarHorse code; elemental abundances from the GALAH and APOGEE spectroscopic surveys; and photometric metallicities from the SkyMapper survey. Bayesian ages were estimated for the SkyMapper stars. Since the Hercules stream is the closest kinematical structure to the HR 1614 moving group in velocity space, we use it for comparison purposes. Stars that are likely to be members of the two groups were selected based on their space velocities. The HR 1614 moving group is located mainly at negative U velocities, does not form an arch of constant energy in the U-V space and is tilted in V. The overdensity is not chemically homogeneous but that its stars exist at a wide range of both metallicities, ages, and elemental abundance ratios. They are essentially similar to what is observed in the Galactic thin and thick disks, a younger population (~3 Gyr) that is metal-rich (-0.2<[Fe/H]<0.4) and alpha-poor. It should therefore not be considered as a dissolving open cluster, or an accreted population. We suggest that HR 1614 has a complex origin that could be explained by combining several different mechanisms such as resonances with the Galactic bar and spiral structure, phase-mixing of dissolving spiral structure, and phase-mixing due to an external perturbation.
We report Spitzer Space Telescope observations during predicted transits of the exoplanet Proxima Centauri b. As the nearest terrestrial habitable-zone planet we will ever discover, any potential transit of Proxima b would place strong constraints on its radius, bulk density, and atmosphere. Subsequent transmission spectroscopy and secondary-eclipse measurements could then probe the atmospheric chemistry, physical processes, and orbit, including a search for biosignatures. However, our photometric results rule out planetary transits at the 200~ppm level at 4.5$~{mu}m$, yielding a 3$sigma$ upper radius limit of 0.4~$R_rm{oplus}$ (Earth radii). Previous claims of possible transits from optical ground- and space-based photometry were likely correlated noise in the data from Proxima Centauris frequent flaring. Follow-up observations should focus on planetary radio emission, phase curves, and direct imaging. Our study indicates dramatically reduced stellar activity at near-to-mid infrared wavelengths, compared to the optical. Proxima b is an ideal target for space-based infrared telescopes, if their instruments can be configured to handle Proximas brightness.
295 - S. Moehler , S. Dreizler , T. Lanz 2010
UV observations of some massive globular clusters have revealed a significant population of stars hotter and fainter than the hot end of the horizontal branch (HB), the so-called blue hook stars. This feature might be explained either by the late hot flasher scenario where stars experience the helium flash while on the white dwarf cooling curve or by the progeny of the helium-enriched sub-population postulated to exist in some clusters. Previous spectroscopic analyses of blue hook stars in omega Cen and NGC 2808 support the late hot flasher scenario, but the stars contain much less helium than expected and the predicted C and N enrichment cannot be verified. We compare the observed effective temperatures, surface gravities, helium abundances, and carbon line strengths (where detectable) of our targets stars with the predictions of the two aforementioned scenarios. Moderately high resolution spectra of hot HB stars in the globular cluster omega Cen were analysed for radial velocity variations, atmospheric parameters, and abundances using LTE and non-LTE model atmospheres. We find no evidence of close binaries among our target stars. All stars below 30,000K are helium-poor and very similar to HB stars observed in that temperature range in other globular clusters. In the temperature range 30,000K to 50,000K, we find that 28% of our stars are helium-poor (log(He/H) < -1.6), while 72% have roughly solar or super-solar helium abundance (log(He/H) >= -1.5). We also find that carbon enrichment is strongly correlated with helium enrichment, with a maximum carbon enrichment of 3% by mass. A strong carbon enrichment in tandem with helium enrichment is predicted by the late hot flasher scenario, but not by the helium-enrichment scenario. We conclude that the helium-rich HB stars in omega Cen cannot be explained solely by the helium-enrichment scenario invoked to explain the blue main sequence.
78 - G.C. Myeong 2018
We use the SDSS-Gaia catalogue to search for substructure in the stellar halo. The sample comprises 62,133 halo stars with full phase space coordinates and extends out to heliocentric distances of $sim 10$ kpc. As actions are conserved under slow changes of the potential, they permit identification of groups of stars with a common accretion history. We devise a method to identify halo substructures based on their clustering in action space, using metallicity as a secondary check. This is validated against smooth models and numerical constructed stellar halos from the Aquarius simulations. We identify 21 substructures in the SDSS-Gaia catalogue, including 7 high significance, high energy and retrograde ones. We investigate whether the retrograde substructures may be material stripped off the atypical globular cluster $omega$~Centauri. Using a simple model of the accretion of the progenitor of the $omega$~Centauri, we tentatively argue for the possible association of up to 5 of our new substructures (labelled Rg1, Rg3, Rg4, Rg6 and Rg7) with this event. This sets a minimum mass of $5 times 10^8 M_odot$ for the progenitor, so as to bring $omega$~Centauri to its current location in action -- energy space. Our proposal can be tested by high resolution spectroscopy of the candidates to look for the unusual abundance patterns possessed by $omega$~Centauri stars.
313 - N. Sanna , E. Pancino , A. Zocchi 2020
The galactic globular cluster Omega Centauri is the most massive of its kind, with a complex mix of multiple stellar populations and several kinematic and dynamical peculiarities. Different mean proper motions have been detected among the three main sub-populations, implying that the most metal-rich one is of accreted origin. This particular piece of evidence has been a matter of debate because the available data have either not been sufficiently precise or limited to a small region of the cluster to ultimately confirm or refute the result. Using astrometry from the second Gaia data release and recent high-quality, multi-band photometry, we are now in a position to resolve the controversy. We reproduced the original analysis using the Gaia data and found that the three populations have the same mean proper motion. Thus, there is no need to invoke an accreted origin for the most metal-rich sub-population.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا