Do you want to publish a course? Click here

Proxima Centauri b is not a transiting exoplanet

103   0   0.0 ( 0 )
 Added by James Jenkins Dr
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report Spitzer Space Telescope observations during predicted transits of the exoplanet Proxima Centauri b. As the nearest terrestrial habitable-zone planet we will ever discover, any potential transit of Proxima b would place strong constraints on its radius, bulk density, and atmosphere. Subsequent transmission spectroscopy and secondary-eclipse measurements could then probe the atmospheric chemistry, physical processes, and orbit, including a search for biosignatures. However, our photometric results rule out planetary transits at the 200~ppm level at 4.5$~{mu}m$, yielding a 3$sigma$ upper radius limit of 0.4~$R_rm{oplus}$ (Earth radii). Previous claims of possible transits from optical ground- and space-based photometry were likely correlated noise in the data from Proxima Centauris frequent flaring. Follow-up observations should focus on planetary radio emission, phase curves, and direct imaging. Our study indicates dramatically reduced stellar activity at near-to-mid infrared wavelengths, compared to the optical. Proxima b is an ideal target for space-based infrared telescopes, if their instruments can be configured to handle Proximas brightness.



rate research

Read More

102 - Geoffrey W. Marcy 2021
A search for laser light from Proxima Centauri was performed, including 107 high-resolution, optical spectra obtained between 2004 and 2019. Among them, 57 spectra contain multiple, confined spectral combs, each consisting of 10 closely-spaced frequencies of light. The spectral combs, as entities, are themselves equally spaced with a frequency separation of 5800 GHz, rendering them unambiguously technological in origin. However, the combs do not originate at Proxima Centauri. Otherwise, the 107 spectra of Proxima Centauri show no evidence of technological signals, including 29 observations between March and July 2019 when the candidate technological radio signal, BLC1, was captured by Breakthrough Listen. This search would have revealed lasers pointed toward Earth having a power of 20 to 120 kilowatts and located within the 1.3au field of view centered on Proxima Centauri, assuming a benchmark laser launcher having a 10-meter aperture.
We aim to confirm the presence of Proxima b using independent measurements obtained with the new ESPRESSO spectrograph, and refine the planetary parameters taking advantage of its improved precision. We analysed 63 spectroscopic ESPRESSO observations of Proxima taken during 2019. We obtained radial velocity measurements with a typical radial velocity photon noise of 26 cm/s. We ran a joint MCMC analysis on the time series of the radial velocity and full-width half maximum of the cross-correlation function to model the planetary and stellar signals present in the data, applying Gaussian process regression to deal with stellar activity. We confirm the presence of Proxima b independently in the ESPRESSO data. The ESPRESSO data on its own shows Proxima b at a period of 11.218 $pm$ 0.029 days, with a minimum mass of 1.29 $pm$ 0.13 Me. In the combined dataset we measure a period of 11.18427 $pm$ 0.00070 days with a minimum mass of 1.173 $pm$ 0.086 Me. We find no evidence of stellar activity as a potential cause for the 11.2 days signal. We find some evidence for the presence of a second short-period signal, at 5.15 days with a semi-amplitude of merely 40 cm/s. If caused by a planetary companion, it would correspond to a minimum mass of 0.29 $pm$ 0.08 Me. We find that the FWHM of the CCF can be used as a proxy for the brightness changes and that its gradient with time can be used to successfully detrend the radial velocity data from part of the influence of stellar activity. The activity-induced radial velocity signal in the ESPRESSO data shows a trend in amplitude towards redder wavelengths. Velocities measured using the red end of the spectrograph are less affected by activity, suggesting that the stellar activity is spot-dominated. The data collected excludes the presence of extra companions with masses above 0.6 Me at periods shorter than 50 days.
Transiting planets orbiting bright stars are the most favorable targets for follow-up and characterization. We report the discovery of the transiting hot Jupiter XO-7 b and of a second, massive companion on a wide orbit around a circumpolar, bright, and metal rich G0 dwarf (V = 10.52, $T_{rm eff} = 6250 pm 100 ; rm K$, $rm[Fe/H] = 0.432 pm 0.057 ; rm dex$). We conducted photometric and radial velocity follow-up with a team of amateur and professional astronomers. XO-7 b has a period of $ 2.8641424 pm 0.0000043$ days, a mass of $0.709 pm 0.034 ; rm M_{rm J}$, a radius of $1.373 pm 0.026 ; rm R_{rm J}$, a density of $0.340 pm 0.027 ; rm g , {cm}^{-3}$, and an equilibrium temperature of $1743 pm 23 ; rm K$. Its large atmospheric scale height and the brightness of the host star make it well suited to atmospheric characterization. The wide orbit companion is detected as a linear trend in radial velocities with an amplitude of $sim100 ; rm m , {s}^{-1}$ over two years, yielding a minimum mass of $4 ; rm M_{rm J}$; it could be a planet, a brown dwarf, or a low mass star. The hot Jupiter orbital parameters and the presence of the wide orbit companion point towards a high eccentricity migration for the hot Jupiter. Overall, this system will be valuable to understand the atmospheric properties and migration mechanisms of hot Jupiters and will help constrain the formation and evolution models of gas giant exoplanets.
Proxima Centauri is known as the closest star from the Sun. Recently, radial velocity observations revealed the existence of an Earth-mass planet around it. With an orbital period of ~11 days, the surface of Proxima Centauri b is temperate and might be habitable. We took a photometric monitoring campaign to search for its transit, using the Bright Star Survey Telescope at the Zhongshan Station in Antarctica. A transit-like signal appearing on 2016 September 8th, is identified tentatively. Its midtime, $T_{C}=2,457,640.1990pm0.0017$ HJD, is consistent with the predicted ephemeris based on RV orbit in a 1$sigma$ confidence interval. Time-correlated noise is pronounced in the light curve of Proxima Centauri, affecting detection of transits. We develop a technique, in a Gaussian process framework, to gauge the statistical significance of potential transit detection. The tentative transit signal reported here, has a confidence level of $2.5sigma$. Further detection of its periodic signals is necessary to confirm the planetary transit of Proxima Centauri b. We plan to monitor Proxima Centauri in next Polar night at Dome A in Antarctica, taking the advantage of continuous darkness. citet{Kipping17} reported two tentative transit-like signals of Proxima Centauri b, observed by the Microvariability and Oscillation of Stars space Telescope in 2014 and 2015, respectively. The midtransit time of our detection is 138 minutes later than that predicted by their transit ephemeris. If all the signals are real transits, the misalignment of the epochs plausibly suggests transit timing variations of Proxima Centauri b induced by an outer planet in this system.
We analyze the evolution of the potentially habitable planet Proxima Centauri b to identify environmental factors that affect its long-term habitability. We consider physical processes acting on size scales ranging from the galactic to the stellar system to the planets core. We find that there is a significant probability that Proxima Centauri has had encounters with its companion stars, Alpha Centauri A and B, that are close enough to destabilize an extended planetary system. If the system has an additional planet, as suggested by the discovery data, then it may perturb planet bs eccentricity and inclination, possibly driving those parameters to non-zero values, even in the presence of strong tidal damping. We also model the internal evolution of the planet, evaluating the roles of different radiogenic abundances and tidal heating and find that magnetic field generation is likely for billions of years. We find that if planet b formed in situ, then it experienced 169 +/- 13 million years in a runaway greenhouse as the star contracted during its formation. This early phase could remove up to 5 times as much water as in the modern Earths oceans, possibly producing a large abiotic oxygen atmosphere. On the other hand, if Proxima Centauri b formed with a substantial hydrogen atmosphere (0.01 - 1% of the planets mass), then this envelope could have shielded the water long enough for it to be retained before being blown off itself. After modeling this wide range of processes we conclude that water retention during the host stars pre-main sequence phase is the biggest obstacle for Proxima bs habitability. These results are all obtained with a new software package called VPLANET.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا