Do you want to publish a course? Click here

Three-point correlator of twist-2 operators in BFKL limit

124   0   0.0 ( 0 )
 Added by Evgeny Sobko
 Publication date 2015
  fields
and research's language is English
 Authors Ian Balitsky




Ask ChatGPT about the research

We compute the correlation function of three twist-2 operators in N = 4 SYM in the leading BFKL approximation at any N_c. In this limit, the result is applicable to other gauge theories, including QCD.

rate research

Read More

We present calculation of the correlation function of three twist-2 operators in the BFKL limit. The calculation is performed in N = 4 SYM but the result is valid in other gauge theories such as QCD. The obtained leading order structure constant is exact for any number of colors.
83 - Ian Balitsky 2013
We generalize local operators of the leading twist-2 of N=4 SYM theory to the case of complex Lorentz spin j using principal series representation of sl(2,R). We give the direct computation of correlation function of two such non-local operators in the BFKL regime when j -> 1. The correlator appears to have the expected conformal coordinate dependence governed by the anomalous dimension of twist-2 operator in NLO BFKL approximation predicted by Kotikov and Lipatov.
61 - Ian Balitsky 2018
The structure constants of twist-two operators with spin $j$ in the BFKL limit $g^2rightarrow 0, jrightarrow 1$ but ${g^2over j-1}sim 1$ are determined from the calculation of the three-point correlator of twist-two light-ray operators in the triple Regge limit. It is well known that the anomalous dimensions of twist-two operators in this limit are determined by the BFKL intercept. Similarly, the obtained structure constants are determined by an analytic function of three BFKL intercepts.
We compute, to the lowest perturbative order in $SU(N)$ Yang-Mills theory, $n$-point correlators in the coordinate and momentum representation of the gauge-invariant twist-$2$ operators with maximal spin along the $p_+$ direction, both in Minkowskian and -- by analytic continuation -- Euclidean space-time. We also construct the corresponding generating functionals. Remarkably, they have the structure of the logarithm of a functional determinant of the identity plus a term involving the effective propagators that act on the appropriate source fields.
We study the two-point function of the stress-tensor multiplet of $mathcal{N}=4$ SYM in the presence of a line defect. To be more precise, we focus on the single-trace operator of conformal dimension two that sits in the $20$ irrep of the $mathfrak{so}(6)_text{R}$ R-symmetry, and add a Maldacena-Wilson line to the configuration which makes the two-point function non-trivial. We use a combination of perturbation theory and defect CFT techniques to obtain results up to next-to-leading order in the coupling constant. Being a defect CFT correlator, there exist two (super)conformal block expansions which capture defect and bulk data respectively. We present a closed-form formula for the defect CFT data, which allows to write an efficient Taylor series for the correlator in the limit when one of the operators is close to the line. The bulk channel is technically harder and closed-form formulae are particularly challenging to obtain, nevertheless we use our analysis to check against well-known data of $mathcal{N}=4$ SYM. In particular, we recover the correct anomalous dimensions of a famous tower of twist-two operators (which includes the Konishi multiplet), and successfully compare the one-point function of the stress-tensor multiplet with results obtained using matrix-model techniques.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا