Do you want to publish a course? Click here

Electron-hole compensation effect between topologically trivial electrons and nontrivial holes in NbAs

121   0   0.0 ( 0 )
 Added by Yongkang Luo Dr.
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Via angular Shubnikov-de Hass (SdH) quantum oscillations measurements, we determine the Fermi surface topology of NbAs, a Weyl semimetal candidate. The SdH oscillations consist of two frequencies, corresponding to two Fermi surface extrema: 20.8 T ($alpha$-pocket) and 15.6 T ($beta$-pocket). The analysis, including a Landau fan plot, shows that the $beta$-pocket has a Berry phase of $pi$ and a small effective mass $sim$0.033 $m_0$, indicative of a nontrivial topology in momentum space; whereas the $alpha$-pocket has a trivial Berry phase of 0 and a heavier effective mass $sim$0.066 $m_0$. From the effective mass and the $beta$-pocket frequency we determine that the Weyl node is 110.5 meV from the chemical potential. A novel electron-hole compensation effect is discussed in this system, and its impact on magneto-transport properties is addressed. The difference between NbAs and other monopnictide Weyl semimetals is also discussed.



rate research

Read More

Superfluidity in e-h bilayers in graphene and GaAs has been predicted many times but not observed. A key problem is how to treat the screening of the Coulomb interaction for pairing. Different mean-field theories give dramatically different conclusions, and we test them against diffusion Monte-Carlo calculations. We get excellent agreement with the mean-field theory that uses screening in the superfluid state, but large discrepancies with the others. The theory predicts no superfluidity in existing devices and gives pointers for new devices to generate superfluidity.
Three-particle complexes consisting of two holes in the completely filled zero electron Landau level and an excited electron in the unoccupied first Landau level are investigated in a quantum Hall insulator. The distinctive features of these three-particle complexes are an electron-hole mass symmetry and the small energy gap of the quantum Hall insulator itself. Theoretical calculations of the trion energy spectrum in a quantizing magnetic field predict that, besides the ground state, trions feature a hierarchy of excited bound states. In agreement with the theoretical simulations, we observe new photoluminescence lines related to the excited trion states. A relatively small energy gap allows the binding of three-particle complexes with magnetoplasma oscillations and formation of plasmarons. The plasmaron properties are investigated experimentally.
122 - S. A. Owerre 2018
In two-dimensional (2D) insulating magnets, the thermal Hall effect of magnons is believed to be a consequence of topological magnon insulator with separated magnon bands and a well-defined Chern number. Due to broken time-reversal symmetry the thermal Hall effect vanishes in Dirac magnons. In this paper, we show that periodically driven semi-Dirac magnon in 2D insulating honeycomb ferromagnet results in a photoinduced Dirac magnon at the topological phase transition between a photoinduced topological and trivial magnon insulator. Remarkably, the photoinduced Dirac magnon and the photoinduced trivial magnon insulator possess a nonzero Berry curvature and exhibit a finite thermal Hall effect. These intriguing properties of periodically driven 2D insulating magnets originate from the bosonic nature of magnons. Hence, they are not expected to exist in 2D electronic Floquet systems.
Semiconductor valence holes are known to have heavy and light effective masses; but the consequence of this mass difference on Coulomb scatterings has been considered intractable and thus ignored up to now. The reason is that the heavy/light index is quantized along the hole momentum that changes in a Coulomb scattering; so, a heavy hole can turn light, depending on the scattering angle. This mass change has never been taken into account in many-body problems, and a single ``average hole mass has been used instead. In order to study the missed consequences of this crude approximation, the first necessary step is to determine the Coulomb scatterings with valence holes in a precise way. We here derive these scatterings from scratch, starting from the threefold valence-electron spatial level, all the way through the spin-orbit splitting, the Kohn-Luttinger effective Hamiltonian, its spherical approximation, and the phase factors that appear when turning from valence electron to hole operators, that is, all the points of semiconductor physics that render valence holes so different from a na{i}ve positive charge.
We report the effect of hydrostatic pressure on the magnetotransport properties of the Weyl semimetal NbAs. Subtle changes can be seen in the $rho_{xx}(T)$ profiles with pressure up to 2.31 GPa. The Fermi surfaces undergo an anisotropic evolution under pressure: the extremal areas slightly increase in the $mathbf{k_x}$-$mathbf{k_y}$ plane, but decrease in the $mathbf{k_z}$-$mathbf{k_y}$($mathbf{k_x}$) plane. The topological features of the two pockets observed at atmospheric pressure, however, remain unchanged at 2.31 GPa. No superconductivity can be seen down to 0.3 K for all the pressures measured. By fitting the temperature dependence of specific heat to the Debye model, we obtain a small Sommerfeld coefficient $gamma_0=$ 0.09(1) mJ/(mol$cdot$K$^2$) and a large Debye temperature, $Theta_D=$ 450(9) K, confirming a hard crystalline lattice that is stable under pressure. We also studied the Kadowaki-Woods ratio of this low-carrier-density massless system, $R_{KW}=$ 3.2$times 10^4$ $muOmega$ cm mol$^2$ K$^2$ J$^{-2}$. After accounting for the small carrier density in NbAs, this $R_{KW}$ indicates a suppressed transport scattering rate relative to other metals.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا