No Arabic abstract
We use exceptional field theory as a tool to work out the full non-linear reduction ansaetze for the AdS$_5times S^5$ compactification of IIB supergravity and its non-compact counterparts in which the sphere $S^5$ is replaced by the inhomogeneous hyperboloidal space $H^{p,q}$. The resulting theories are the maximal 5D supergravities with gauge groups SO(p,q). They are consistent truncations in the sense that every solution of 5D supergravity lifts to a solution of IIB supergravity. In particular, every stationary point and every holographic RG flow of the scalar potentials for the compact and non-compact 5D gaugings directly lift to solutions of IIB supergravity.
The field strength superfield of IIB supergravity on $AdS_5xz S^5$ is expanded in harmonics on $S^5$ with coefficients which are $D=5, N=8$ chiral superfields. On the boundary of $AdS_5$ these superfields map to $D=4,N=4$ chiral superfields and both sets of superfields obey additional fourth-order constraints. The constraints on the $D=4,N=4$ chiral fields are solved using harmonic superspace in terms of prepotential superfields which couple in a natural way to composite operator multiplets of the boundary $N=4,D=4$ superconformal field theory.
This paper is a companion to our earlier work arXiv:0710.3440 in which the projective superspace formulation for matter-coupled simple supergravity in five dimensions was presented. For the minimal multiplet of 5D N=1 supergravity introduced by Howe in 1981, we give a complete solution of the Bianchi identities. The geometry of curved superspace is shown to allow the existence of a large family of off-shell supermultiplets that can be used to describe supersymmetric matter, including vector multiplets and hypermultiplets. We formulate a manifestly locally supersymmetric action principle. Its natural property turns out to be the invariance under so-called projective transformations of the auxiliary isotwistor variables. We then demonstrate that the projective invariance allows one to uniquely restore the action functional in a Wess-Zumino gauge. The latter action is well-suited for reducing the supergravity-matter systems to components.
We perform a careful investigation of which p-form fields can be introduced consistently with the supersymmetry algebra of IIA and/or IIB ten-dimensional supergravity. In particular the ten-forms, also known as top-forms, require a careful analysis since in this case, as we will show, closure of the supersymmetry algebra at the linear level does not imply closure at the non-linear level. Consequently, some of the (IIA and IIB) ten-form potentials introduced in earlier work of some of us are discarded. At the same time we show that new ten-form potentials, consistent with the full non-linear supersymmetry algebra can be introduced. We give a superspace explanation of our work. All of our results are precisely in line with the predictions of the E(11) algebra.
We study 5-dimensional supergravity on S^1/Z_2 with a physical Z_2-odd vector multiplet, which yields an additional modulus other than the radion. We derive 4-dimensional effective theory and find additional terms in the Kahler potential that are peculiar to the multi moduli case. Such terms can avoid tachyonic soft scalar masses at tree-level, which are problematic in the single modulus case. We also show that the flavor structure of the soft terms are different from that in the single modulus case when hierarchical Yukawa couplings are generated by wavefunction localization in the fifth dimension. We present a concrete model that stabilizes the moduli at a supersymmetry breaking Minkowski minimum, and show the low energy sparticle spectrum.
We present a systematic way for deriving a four-dimensional (4D) effective action of the five-dimensional (5D) orbifold supergravity respecting the N=1 {it off-shell} structure. As an illustrating example, we derive a 4D effective theory of the 5D gauged supergravity with a universal hypermultiplet and {it generic} gaugings, which includes the 5D heterotic M-theory and the supersymmetric Randall-Sundrum model as special limits of the gauging parameters. We show the vacuum structure of such model, especially the nature of moduli stabilization, introducing perturbative superpotential terms at the orbifold fixed points.