No Arabic abstract
We perform a careful investigation of which p-form fields can be introduced consistently with the supersymmetry algebra of IIA and/or IIB ten-dimensional supergravity. In particular the ten-forms, also known as top-forms, require a careful analysis since in this case, as we will show, closure of the supersymmetry algebra at the linear level does not imply closure at the non-linear level. Consequently, some of the (IIA and IIB) ten-form potentials introduced in earlier work of some of us are discarded. At the same time we show that new ten-form potentials, consistent with the full non-linear supersymmetry algebra can be introduced. We give a superspace explanation of our work. All of our results are precisely in line with the predictions of the E(11) algebra.
We derive a duality-symmetric action for type IIA D=10 supergravity by the Kaluza-Klein dimensional reduction of the duality-symmetric action for D=11 supergravity with the 3-form and 6-form gauge field. We then double the bosonic fields arising as a result of the Kaluza-Klein dimensional reduction and add mass terms to embrace the Romanss version, so that in its final form the bosonic part of the action contains the dilaton, NS-NS and RR potentials of the standard type IIA supergravity as well as their duals, the corresponding duality relations are deduced directly from the action. We discuss the relation of our approach to the doubled field formalism by Cremmer, Julia, Lu and Pope, complete the extension of this construction to the supersymmetric case and lift it onto the level of the proper duality-symmetric action. We also find a new dual formulation of type IIA D=10 supergravity in which the NS-NS two-form potential is replaced with its six-form counterpart. A truncation of this dual model produces the Chamseddines version of N=1, D=10 supergravity.
The framework of exceptional field theory is extended by introducing consistent deformations of its generalised Lie derivative. For the first time, massive type IIA supergravity is reproduced geometrically as a solution of the section constraint. This provides a unified description of all ten- and eleven-dimensional maximal supergravities. The action of the E7 deformed theory is constructed, and reduces to those of exceptional field theory and gauged maximal supergravity in respective limits. The relation of this new framework to other approaches for generating the Romans mass non-geometrically is discussed.
We derive necessary and sufficient conditions for N=1 compactifications of (massive) IIA supergravity to AdS(4) in the language of SU(3) structures. We find new solutions characterized by constant dilaton and nonzero fluxes for all form fields. All fluxes are given in terms of the geometrical data of the internal compact space. The latter is constrained to belong to a special class of half-flat manifolds.
The field strength superfield of IIB supergravity on $AdS_5xz S^5$ is expanded in harmonics on $S^5$ with coefficients which are $D=5, N=8$ chiral superfields. On the boundary of $AdS_5$ these superfields map to $D=4,N=4$ chiral superfields and both sets of superfields obey additional fourth-order constraints. The constraints on the $D=4,N=4$ chiral fields are solved using harmonic superspace in terms of prepotential superfields which couple in a natural way to composite operator multiplets of the boundary $N=4,D=4$ superconformal field theory.
In this paper we investigate in detail the correspondence between E10 and Romans massive deformation of type IIA supergravity. We analyse the dynamics of a non-linear sigma model for a spinning particle on the coset space E10/K(E10) and show that it reproduces the dynamics of the bosonic as well as the fermionic sector of the massive IIA theory, within the standard truncation. The mass deformation parameter corresponds to a generator of E10 outside the realm of the generators entering the usual D=11 analysis, and is naturally included without any deformation of the coset model for E10/K(E10). Our analysis thus provides a dynamical unification of the massless and massiv