In this paper, we consider a multidimensional ergodic diffusion with jumps driven by a Brownian motion and a Poisson random measure associated with a pure-jump Levy process with finite Levy measure, whose drift coefficient depends on an unknown parameter. Considering the process discretely observed at high frequency, we derive the local asymptotic normality (LAN) property.
We consider a stochastic differential equation with additive fractional noise with Hurst parameter $H>1/2$, and a non-linear drift depending on an unknown parameter. We show the Local Asymptotic Normality property (LAN) of this parametric model with rate $sqrt{tau}$ as $taurightarrow infty$, when the solution is observed continuously on the time interval $[0,tau]$. The proof uses ergodic properties of the equation and a Girsanov-type transform. We analyse the particular case of the fractional Ornstein-Uhlenbeck process and show that the Maximum Likelihood Estimator is asymptotically efficient in the sense of the Minimax Theorem.
In this note, we present a version of Hoeffdings inequality in a continuous-time setting, where the data stream comes from a uniformly ergodic diffusion process. Similar to the well-studied case of Hoeffdings inequality for discrete-time uniformly ergodic Markov chain, the proof relies on techniques ranging from martingale theory to classical Hoeffdings lemma as well as the notion of deviation kernel of diffusion process. We present two examples to illustrate our results. In the first example we consider large deviation probability on the occupation time of the Jacobi diffusion, a popular process used in modelling of exchange rates in mathematical finance, while in the second example we look at the exponential functional of a finite interval analogue of the Ornstein-Uhlenbeck process introduced by Kessler and S{o}rensen (1999).
Groups in ecology are often affected by sudden environmental perturbations. Parameters of stochastic models are often imprecise due to various uncertainties. In this paper, we formulate a stochastic Holling II one-predator two-prey system with jumps and interval parameters. Firstly, we prove the existence and uniqueness of the positive solution. Moreover, the sufficient conditions for the extinction and persistence in the mean of the solution are obtained.
This article is concerned with the design and analysis of discrete time Feynman-Kac particle integration models with geometric interacting jump processes. We analyze two general types of model, corresponding to whether the reference process is in continuous or discrete time. For the former, we consider discrete generation particle models defined by arbitrarily fine time mesh approximations of the Feynman-Kac models with continuous time path integrals. For the latter, we assume that the discrete process is observed at integer times and we design new approximation models with geometric interacting jumps in terms of a sequence of intermediate time steps between the integers. In both situations, we provide non asymptotic bias and variance theorems w.r.t. the time step and the size of the system, yielding what appear to be the first results of this type for this class of Feynman-Kac particle integration models. We also discuss uniform convergence estimates w.r.t. the time horizon. Our approach is based on an original semigroup analysis with first order decompositions of the fluctuation errors.
We develop the rough path counterpart of It^o stochastic integration and - differential equations driven by general semimartingales. This significantly enlarges the classes of (It^o / forward) stochastic differential equations treatable with pathwise methods. A number of applications are discussed.