Do you want to publish a course? Click here

Dependences on RE of Superconducting Properties of Transition Metal co-doped (Ca,RE)FeAs2 with RE = La-Gd

173   0   0.0 ( 0 )
 Added by Hiroyuki Yakita
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dependence of superconducting properties of (Ca,RE)(Fe,TM)As2 [(Ca,RE)112, TM: Co, Ni)] on RE elements (RE = La-Gd) was systematically investigated. Improvement of superconducting properties by Co or Ni co-doping was observed for all (Ca,RE)112, which is similar to Co-co-doped (Ca,La)112 or (Ca,Pr)112. Tc of Co-co-doped samples decreased from 38 K for RE = La to 29 K for RE = Gd with decreasing ionic radii of RE3+. However, Co-co-doped (Ca,Eu)112 showed exceptionally low Tc = 21 K probably due to the co-existence of Eu3+ and Eu2+ suggested by longer interlayer distance dFe-Fe of (Ca,Eu)112 than other (Ca,RE)112.



rate research

Read More

Superconducting properties of Co-co-doped (Ca,RE)FeAs2 ((Ca,RE)112: RE = La, Pr) were investigated. Co-co-doping increased Tc of (Ca,Pr)112 while Mn-co-doping suppressed superconductivity of (Ca,RE)112. Co-co-doped (Ca,La)112 showed large diamagnetic screening and sharper superconducting transition than Co-free (Ca,La)112. Tczero observed in resistivity measurements increased from 14 K to 30 K by Co-co-doping, while Tconset was not increased. The critical current density (Jc) of Co-co-doped (Ca,La)112 were approximately 2.1 x 104 Acm-2 and 3.2 x 103 Acm-2 at 2 K and 25 K, respectively, near zero field. These relatively high Jcs and large diamagnetic screening observed in susceptibility measurement as for polycrystalline bulks suggest bulk superconductivity of Co-co-doped (Ca,RE)112 compounds.
Synthesis of a series of layered iron arsenides Ca1-xRExFeAs2 (112) was attempted by heating at 1000 C under a high-pressure of 2 GPa. The 112 phase successfully forms with RE = La, Ce, Nd, Sm, Eu and Gd, while Tb, Dy and Ho substituted and RE free samples does not contain the 112 phase. The Ce, Nd, Sm, Eu and Gd doped Ca1-xRExFeAs2 are new compounds. All of them exhibit superconducting transition except for the Ce doped sample. The behaviour of the critical temperature, with the RE ionic radii have been investigated.
Magnetic atoms on heavy-element superconducting substrates are potential building blocks for realizing topological superconductivity in one- and two-dimensional atomic arrays. Their localized magnetic moments induce so-called Yu-Shiba-Rusinov (YSR) states inside the energy gap of the substrate. In the dilute limit, where the electronic states of the array atoms are only weakly coupled, proximity of the YSR states to the Fermi energy is essential for the formation of topological superconductivity in the band of YSR states. Here, we reveal via scanning tunnel spectroscopy and ab initio calculations of a series of 3d transition metal atoms (Mn, Fe, Co) adsorbed on the heavy-element superconductor Re that the increase of the Kondo coupling and sign change in magnetic anisotropy with d-state filling is accompanied by a shift of the YSR states through the energy gap of the substrate and a crossing of the Fermi level. The uncovered systematic trends enable the identification of the most promising candidates for the realization of topological superconductivity in arrays of similar systems.
117 - Yanwei Cui , Siqi Wu , Qinqing Zhu 2021
Superconductivity frequently appears by doping compounds that show a collective phase transition. So far, however, this has not been observed in topological materials. Here we report the discovery of superconductivity induced by Ga doping in orthorhombic Re$_{3}$Ge$_{7}$, which undergoes a second-order metal-insulator-like transition at $sim$58 K and is predicted to have a nontrivial band topology. It is found that the substitution of Ga for Ge leads to hole doping in Re$_{3}$Ge$_{7-x}$Ga$_{x}$. As a consequence, the phase transition is gradually suppressed and disappears above $x$ = 0.2. At this $x$ value, superconductivity emerges and $T_{rm c}$ exhibits a dome-like doping dependence with a maximum value of 3.37 K at $x$ = 0.25. First-principles calculations suggest that the phase transition in Re$_{3}$Ge$_{7}$ is associated with an electronic instability driven by Fermi surface nesting and the nontrival band topology is preserved after Ga doping. Our results indicate that Ga-doped Re$_{3}$Ge$_{7}$ provides a rare opportunity to study the interplay between superconductivity and competing electronic states in a topologically nontrivial system.
183 - G. F. Chen , Z. Li , D. Wu 2008
Different element substitution effects in transition metal oxypnictide Re(O$_{1-x}$F$_x$)TAs with Re=La, Ce, Nd, Eu, Gd, Tm, T=Fe, Ni, Ru, were studied. Similar to the La- or Ce-based systems, we found that the pure NdOFeAs shows a strong resistivity anomaly near 145 K, which was ascribed to the spin-density-wave instability. Electron doping by F increases T$_c$ to about 50 K. While in the case of Gd, the T$_c$ is reduced below 10 K. The tetragonal ZrCuSiAs-type structure could not be formed for Eu or Tm substitution in our preparing process. For Ni-based case, although both pure and F-doped LaONiAs are superconducting, no superconductivity was found when La was replaced by Ce in both cases, instead a ferromagnetic ordering transition was likely to form at low temperature in F-doped sample. We also synthesized LaO$_{1-x}$F$_x$RuAs and CeO$_{1-x}$F$_x$RuAs compounds. Metallic behavior was observed down to 4 K.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا