Do you want to publish a course? Click here

The Destruction of the Circumstellar Ring of SN 1987A

262   0   0.0 ( 0 )
 Added by Claes Fransson
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present imaging and spectroscopic observations with HST and VLT of the ring of SN 1987A from 1994 to 2014. After an almost exponential increase of the shocked emission from the hotspots up to day ~8,000 (~2009), both this and the unshocked emission are now fading. From the radial positions of the hotspots we see an acceleration of these up to 500-1000 km/s, consistent with the highest spectroscopic shock velocities from the radiative shocks. In the most recent observations (2013 and 2014), we find several new hotspots outside the inner ring, excited by either X-rays from the shocks or by direct shock interaction. All of these observations indicate that the interaction with the supernova ejecta is now gradually dissolving the hotspots. We predict, based on the observed decay, that the inner ring will be destroyed by ~2025.



rate research

Read More

Both CO and SiO have been observed at early and late phases in SN 1987A. H_2 was predicted to form at roughly the same time as these molecules, but was not detected at early epochs. Here we report the detection of NIR lines from H_2 at 2.12 mu and 2.40 mu in VLT/SINFONI spectra obtained between days 6489 and 10,120. The emission is concentrated to the core of the supernova in contrast to H-alpha and approximately coincides with the [Si I]/[Fe II] emission detected previously in the ejecta. Different excitation mechanisms and power sources of the emission are discussed. From the nearly constant H_2 luminosities we favour excitation resulting from the 44Ti decay.
82 - J. Larsson , C. Fransson , D. Alp 2019
The nearby SN 1987A offers a spatially resolved view of the evolution of a young supernova remnant. Here we precent recent Hubble Space Telescope imaging observations of SN 1987A, which we use to study the evolution of the ejecta, the circumstellar equatorial ring (ER) and the increasing emission from material outside the ER. We find that the inner ejecta have been brightening at a gradually slower rate and that the western side has been brighter than the eastern side since ~7000 days. This is expected given that the X-rays from the ER are most likely powering the ejecta emission. At the same time the optical emission from the ER continues to fade linearly with time. The ER is expanding at 680pm 50 km/s, which reflects the typical velocity of transmitted shocks in the dense hotspots. A dozen spots and a rim of diffuse H-alpha emission have appeared outside the ER since 9500 days. The new spots are more than an order of magnitude fainter than the spots in the ER and also fade faster. We show that the spots and diffuse emission outside the ER may be explained by fast ejecta interacting with high-latitude material that extends from the ER toward the outer rings. Further observations of this emission will make it possible to determine the detailed geometry of the high-latitude material and provide insight into the formation of the rings and the mass-loss history of the progenitor.
Spitzer observations of SN 1987A have now spanned more than a decade. Since day ~4,000, mid-infrared (mid-IR) emission has been dominated by that from shock-heated dust in the equatorial ring (ER). From 6,000 to 8,000 days after the explosion, Spitzer observations included broadband photometry at 3.6 - 24 micron, and low and moderate resolution spectroscopy at 5 - 35 micron. Here we present later Spitzer observations, through day 10,377, which include only the broadband measurements at 3.6 and 4.5 micron. These data show that the 3.6 and 4.5 micron brightness has clearly begun to fade after day ~8,500, and no longer tracks the X-ray emission as well as it did at earlier epochs. This can be explained by the destruction of the dust in the ER on time scales shorter than the cooling time for the shocked gas. We find that the evolution of the late time IR emission is also similar to the now fading optical emission. We provide the complete record of the IR emission lines, as seen by Spitzer prior to day 8,000. The past evolution of the gas as seen by the IR emission lines seems largely consistent with the optical emission, although the IR [Fe II] and [Si II] lines show different, peculiar velocity structures.
We present high angular resolution (~80 mas) ALMA continuum images of the SN 1987A system, together with CO $J$=2 $!rightarrow!$ 1, $J$=6 $!rightarrow!$ 5, and SiO $J$=5 $!rightarrow!$ 4 to $J$=7 $!rightarrow!$ 6 images, which clearly resolve the ejecta (dust continuum and molecules) and ring (synchrotron continuum) components. Dust in the ejecta is asymmetric and clumpy, and overall the dust fills the spatial void seen in H$alpha$ images, filling that region with material from heavier elements. The dust clumps generally fill the space where CO $J$=6 $!rightarrow!$ 5 is fainter, tentatively indicating that these dust clumps and CO are locationally and chemically linked. In these regions, carbonaceous dust grains might have formed after dissociation of CO. The dust grains would have cooled by radiation, and subsequent collisions of grains with gas would also cool the gas, suppressing the CO $J$=6 $!rightarrow!$ 5 intensity. The data show a dust peak spatially coincident with the molecular hole seen in previous ALMA CO $J$=2 $!rightarrow!$ 1 and SiO $J$=5 $!rightarrow!$ 4 images. That dust peak, combined with CO and SiO line spectra, suggests that the dust and gas could be at higher temperatures than the surrounding material, though higher density cannot be totally excluded. One of the possibilities is that a compact source provides additional heat at that location. Fits to the far-infrared--millimeter spectral energy distribution give ejecta dust temperatures of 18--23K. We revise the ejecta dust mass to $mathrm{M_{dust}} = 0.2-0.4$M$_odot$ for carbon or silicate grains, or a maximum of $<0.7$M$_odot$ for a mixture of grain species, using the predicted nucleosynthesis yields as an upper limit.
The possible detection of a compact object in the remnant of SN 1987A presents an unprecedented opportunity to follow its early evolution. The suspected detection stems from an excess of infrared emission from a dust blob near the compact objects predicted position. The infrared excess could be due to the decay of isotopes like 44Ti, accretion luminosity from a neutron star or black hole, magnetospheric emission or a wind originating from the spindown of a pulsar, or thermal emission from an embedded, cooling neutron star (NS 1987A). It is shown that the last possibility is the most plausible as the other explanations are disfavored by other observations and/or require fine-tuning of parameters. Not only are there indications the dust blob overlaps the predicted location of a kicked compact remnant, but its excess luminosity also matches the expected thermal power of a 30 year old neutron star. Furthermore, models of cooling neutron stars within the Minimal Cooling paradigm readily fit both NS 1987A and Cas A, the next-youngest known neutron star. If correct, a long heat transport timescale in the crust and a large effective stellar temperature are favored, implying relatively limited crustal n-1S0 superfluidity and an envelope with a thick layer of light elements, respectively. If the locations dont overlap, then pulsar spindown or accretion might be more likely, but the pulsars period and magnetic field or the accretion rate must be rather finely tuned. In this case, NS 1987A may have enhanced cooling and/or a heavy-element envelope.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا