Do you want to publish a course? Click here

Atomic resolution imaging of the two-component Dirac-Landau levels in a gapped graphene monolayer

159   0   0.0 ( 0 )
 Added by Lin He
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The wavefunction of massless Dirac fermions is a two-component spinor. In graphene, a one-atom-thick film showing two-dimensional Dirac-like electronic excitations, the two-component representation reflects the amplitude of the electron wavefunction on the A and B sublattices. This unique property provides unprecedented opportunities to image the two components of massless Dirac fermions spatially. Here we report atomic resolution imaging of the two-component Dirac-Landau levels in a gapped graphene monolayer by scanning tunnelling microscopy and spectroscopy. A gap of about 20 meV, driven by inversion symmetry breaking by the substrate potential, is observed in the graphene on both SiC and graphite substrates. Such a gap splits the n = 0 Landau level (LL) into two levels, 0+ and 0-. We demonstrate that the amplitude of the wavefunction of the 0- LL is mainly at the A sites and that of the 0+ LL is mainly at the B sites of graphene, characterizing the internal structure of the spinor of the n = 0 LL. This provides direct evidence of the two-component nature of massless Dirac fermions.



rate research

Read More

We study a gapped graphene monolayer in a combination of uniform magnetic field and strain-induced uniform pseudomagnetic field. The presence of two fields completely removes the valley degeneracy. The resulting density of states shows a complicated behaviour that can be tuned by adjusting the strength of the fields. We analyze how these features can be observed in the sublattice, valley and full density of states. The analytical expression for the valley DOS is derived.
Massless Dirac electrons in condensed matter have attracted considerable attention. Unlike conventional electrons, Dirac electrons are described in the form of two-component wave functions. In the surface state of topological insulators, these two components are associated with the spin degrees of freedom, hence governing the magnetic properties. Therefore, the observation of the two-component wave function provides a useful clue for exploring the novel spin phenomena. Here we show that the two-component nature is manifested in the Landau levels (LLs) whose degeneracy is lifted by a Coulomb potential. Using spectroscopic-imaging scanning tunneling microscopy, we visualize energy and spatial structures of LLs in a topological insulator Bi2Se3. The observed potential-induced LL splitting and internal structures of Landau orbits are distinct from those in a conventional electron system and are well reproduced by a two-component model Dirac Hamiltonian. Our model further predicts non-trivial energy-dependent spin-magnetization textures in a potential variation. This provides a way to manipulate spins in the topological surface state.
A new family of the low-buckled Dirac materials which includes silicene, germanene, etc. is expected to possess a more complicated sequence of Landau levels than in pristine graphene. Their energies depend, among other factors, on the strength of the intrinsic spin-orbit (SO) and Rashba SO couplings and can be tuned by an applied electric field $E_z$. We studied the influence of the intrinsic Rashba SO term on the energies of Landau levels using both analytical and numerical methods. The quantum magnetic oscillations of the density of states are also investigated. A specific feature of the oscillations is the presence of the beats with the frequency proportional to the field $E_z$. The frequency of the beats becomes also dependent on the carrier concentration when Rashba interaction is present allowing experimental determination of its strength.
Graphene is a powerful playground for studying a plethora of quantum phenomena. One of the remarkable properties of graphene arises when it is strained in particular geometries and the electrons behave as if they were under the influence of a magnetic field. Previously, these strain-induced pseudomagnetic fields have been explored on the nano- and micrometer-scale using scanning probe and transport measurements. Heteroepitaxial strain, in contrast, is a wafer-scale engineering method. Here, we show that pseudomagnetic fields can be generated in graphene through wafer-scale epitaxial growth. Shallow triangular nanoprisms in the SiC substrate generate strain-induced uniform fields of 41 T. This enables the observation of strain-induced Landau levels at room temperature, as detected by angle-resolved photoemission spectroscopy, and confirmed by model calculations and scanning tunneling microscopy measurements. Our work demonstrates the feasibility of exploiting strain-induced quantum phases in two-dimensional Dirac materials on a wafer-scale platform, opening the field to new applications.
Landau level broadening mechanisms in electrically neutral and quasineutral graphene were investigated through micro-magneto-Raman experiments in three different samples, namely, a natural single-layer graphene flake and a back-gated single-layer device, both deposited over Si/SiO2 substrates, and a multilayer epitaxial graphene employed as a reference sample. Interband Landau level transition widths were estimated through a quantitative analysis of the magnetophonon resonances associated with optically active Landau level transitions crossing the energy of the E_2g Raman-active phonon. Contrary to multilayer graphene, the single-layer graphene samples show a strong damping of the low-field resonances, consistent with an additional broadening contribution of the Landau level energies arising from a random strain field. This extra contribution is properly quantified in terms of a pseudomagnetic field distribution Delta_B = 1.0-1.7 T in our single-layer samples.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا