Do you want to publish a course? Click here

Symmetry-Protected Local Minima in Infinite DMRG

83   0   0.0 ( 0 )
 Added by Robert Pfeifer
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The infinite Density Matrix Renormalisation Group (iDMRG) algorithm is a highly successful numerical algorithm for the study of low-dimensional quantum systems, and is also frequently used to initialise the more popular finite DMRG algorithm. Implementations of both finite and infinite DMRG frequently incorporate support for the protection and exploitation of symmetries of the Hamiltonian. In common with other variational tensor network algorithms, convergence of iDMRG to the ground state is not guaranteed, with the risk that the algorithm may become stuck in a local minimum. In this paper I demonstrate the existence of a particularly harmful class of physically irrelevant local minima affecting both iDMRG and to a lesser extent also infinite Time-Evolving Block Decimation (iTEBD), for which the ground state is compatible with the protected symmetries of the Hamiltonian but cannot be reached using the conventional iDMRG or iTEBD algorithms. I describe a modified iDMRG algorithm which evades these local minima, and which also admits a natural interpretation on topologically ordered systems with a boundary.

rate research

Read More

Topological phenomena are commonly studied in phases of matter which are separated from a trivial phase by an unavoidable quantum phase transition. This can be overly restrictive, leaving out scenarios of practical relevance -- similar to the distinction between liquid water and vapor. Indeed, we show that topological phenomena can be stable over a large part of parameter space even when the bulk is strictly speaking in a trivial phase of matter. In particular, we focus on symmetry-protected topological phases which can be trivialized by extending the symmetry group. The topological Haldane phase in spin chains serves as a paradigmatic example where the $SO(3)$ symmetry is extended to $SU(2)$ by tuning away from the Mott limit. Although the Haldane phase is then adiabatically connected to a product state, we show that characteristic phenomena -- edge modes, entanglement degeneracies and bulk phase transitions -- remain parametrically stable. This stability is due to a separation of energy scales, characterized by quantized invariants which are well-defined when a subgroup of the symmetry only acts on high-energy degrees of freedom. The low-energy symmetry group is a quotient group whose emergent anomalies stabilize edge modes and unnecessary criticality, which can occur in any dimension.
122 - Meng Cheng , Chenjie Wang 2018
We study classification of interacting fermionic symmetry-protected topological (SPT) phases with both rotation symmetry and Abelian internal symmetries in one, two, and three dimensions. By working out this classification, on the one hand, we demonstrate the recently proposed correspondence principle between crystalline topological phases and those with internal symmetries through explicit block-state constructions. We find that for the precise correspondence to hold it is necessary to change the central extension structure of the symmetry group by the $mathbb{Z}_2$ fermion parity. On the other hand, we uncover new classes of intrinsically fermionic SPT phases that are only enabled by interactions, both in 2D and 3D with four-fold rotation. Moreover, several new instances of Lieb-Schultz-Mattis-type theorems for Majorana-type fermionic SPTs are obtained and we discuss their interpretations from the perspective of bulk-boundary correspondence.
Protected zero modes in quantum physics traditionally arise in the context of ground states of many-body Hamiltonians. Here we study the case where zero modes exist in the center of a reflection-symmetric many-body spectrum, giving rise to the notion of a protected infinite-temperature degeneracy. For a certain class of nonintegrable spin chains, we show that the number of zero modes is determined by a chiral index that grows exponentially with system size. We propose a dynamical protocol, feasible in ongoing experiments in Rydberg atom quantum simulators, to detect these many-body zero modes and their protecting spectral reflection symmetry. Finally, we consider whether the zero energy states obey the eigenstate thermalization hypothesis, as is expected of states in the middle of the many-body spectrum. We find intriguing differences in their eigenstate properties relative to those of nearby nonzero-energy eigenstates at finite system sizes.
The second law of thermodynamics points to the existence of an `arrow of time, along which entropy only increases. This arises despite the time-reversal symmetry (TRS) of the microscopic laws of nature. Within quantum theory, TRS underpins many interesting phenomena, most notably topological insulators and the Haldane phase of quantum magnets. Here, we demonstrate that such TRS-protected effects are fundamentally unstable against coupling to an environment. Irrespective of the microscopic symmetries, interactions between a quantum system and its surroundings facilitate processes which would be forbidden by TRS in an isolated system. This leads not only to entanglement entropy production and the emergence of macroscopic irreversibility, but also to the demise of TRS-protected phenomena, including those associated with certain symmetry-protected topological phases. Our results highlight the enigmatic nature of TRS in quantum mechanics, and elucidate potential challenges in utilising topological systems for quantum technologies.
One of the cornerstones for topological quantum computations is the Majorana zero mode, which has been intensively searched in fractional quantum Hall systems and topological superconductors. Several recent works suggest that such an exotic mode can also exist in a one-dimensional (1D) interacting double-wire setup even without long-range superconductivity. A notable instability in these proposals comes from interchannel single-particle tunneling that spoils the topological ground state degeneracy. Here we show that a 1D Dirac semimetal (DSM) nanowire is an ideal number-conserving platform to realize such Majorana physics. By inserting magnetic flux, a DSM nanowire is driven into a 1D crystalline-symmetry-protected semimetallic phase. Interaction enables the emergence of boundary Majorana zero modes, which is robust as a result of crystalline symmetry protection. We also explore several experimental consequences of Majorana signals.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا