No Arabic abstract
The importance of shocks in nova explosions has been highlighted by Fermis discovery of gamma-ray producing novae. Over three years of multi-band VLA radio observations of the 2010 nova V1723 Aql show that shocks between fast and slow flows within the ejecta led to the acceleration of particles and the production of synchrotron radiation. Soon after the start of the eruption, shocks in the ejecta produced an unexpected radio flare, resulting in a multi-peaked radio light curve. The emission eventually became consistent with an expanding thermal remnant with mass $2 times 10^{-4} M_odot$ and temperature $10^4$ K. However, during the first two months, the $gtrsim 10^6$ K brightness temperature at low frequencies was too high to be due to thermal emission from the small amount of X-ray producing shock-heated gas. Radio imaging showed structures with velocities of 400 km s$^{-1}$ (d/6 kpc) in the plane of the sky, perpendicular to a more elongated 1500 km s$^{-1}$ (d/6 kpc) flow. The morpho-kinematic structure of the ejecta from V1723 Aql appears similar to nova V959 Mon, where collisions between a slow torus and a faster flow collimated the fast flow and gave rise to gamma -ray producing shocks. Optical spectroscopy and X-ray observations of V1723 Aql during the radio flare are consistent with this picture. Our observations support the idea that shocks in novae occur when a fast flow collides with a slow collimating torus. Such shocks could be responsible for hard X-ray emission, gamma -ray production, and double-peaked radio light curves from some classical novae.
The radio light curves of novae rise and fall over the course of months to years, allowing for detailed observations of the evolution of the nova shell. However, the main parameter determined by radio models of nova explosions - the mass of the ejecta - often seems to exceed theoretical expectations by an order of magnitude. With the recent technological improvements on the Karl G. Jansky Very Large Array (VLA), new observations can test the assumptions upon which ejecta mass estimates are based. Early observations of the classical nova V1723 Aql showed an unexpectedly rapid rise in radio flux density and a distinct bump in the radio light curve on the rise to radio maximum, which is inconsistent with the simple model of spherical ejecta expelled in a single discrete event. This initial bump appears to indicate the presence of shocked material in the outer region of the ejected shell, with the emission from the shocks fading over time. We explore possible origins for this emission and its relation to the mass loss history of the nova. The evolution of the radio spectrum also reveals the density profile, the mass of the ejected shell, and other properties of the ejecta. These observations comprise one of the most complete, longterm set of multi-wavelength radio observations for any classical nova to date.
In colliding-wind binaries, shocks accelerate a fraction of the electrons up to relativistic speeds. These electrons then emit synchrotron radiation at radio wavelengths. Whether or not we detect this radiation depends on the size of the free-free absorption region in the stellar winds of both components. One expects long-period binaries to be detectable, but not the short-period ones. It was therefore surprising to find that Cyg OB2 No. 8A (P = 21.9 d) does show variability locked with orbital phase. To investigate this, we developed a model for the relativistic electron generation (including cooling and advection) and the radiative transfer of the synchrotron emission through the stellar wind. Using this model, we show that the synchrotron emitting region in Cyg OB2 No. 8A does extend far enough beyond the free-free absorption region to generate orbit-locked variability in the radio flux. This model can also be applied to other non-thermal emitters and will prove useful in interpreting observations from future surveys, such as COBRaS - the Cyg OB2 Radio Survey.
The colliding winds in a massive binary system generate synchrotron emission due to a fraction of electrons that have been accelerated to relativistic speeds around the shocks in the colliding-wind region. We studied the radio light curve of 9 Sgr = HD 164794, a massive O-type binary with a 9.1-yr period. We investigated whether the radio emission varies consistently with orbital phase and we determined some parameters of the colliding-wind region. We reduced a large set of archive data from the Very Large Array (VLA) to determine the radio light curve of 9 Sgr at 2, 3.6, 6 and 20 cm. We also constructed a simple model that solves the radiative transfer in the colliding-wind region and both stellar winds. The 2-cm radio flux shows clear phase-locked variability with the orbit. The behaviour at other wavelengths is less clear, mainly due to a lack of observations centred on 9 Sgr around periastron passage. The high fluxes and nearly flat spectral shape of the radio emission show that synchrotron radiation dominates the radio light curve at all orbital phases. The model provides a good fit to the 2-cm observations, allowing us to estimate that the brightness temperature of the synchrotron radiation emitted in the colliding-wind region at 2 cm is at least 4 x 10^8 K. The simple model used here already allows us to derive important information about the colliding-wind region. We propose that 9 Sgr is a good candidate for more detailed modelling, as the colliding-wind region remains adiabatic during the whole orbit thus simplifying the hydrodynamics.
We present radio light curves and spectra of the classical nova V1723 Aql obtained with the Expanded Very Large Array (EVLA). This is the first paper to showcase results from the EVLA Nova Project, which comprises a team of observers and theorists utilizing the greatly enhanced sensitivity and frequency coverage of EVLA radio observations, along with observations at other wavelengths, to reach a deeper understanding of the energetics, morphology, and temporal characteristics of nova explosions. Our observations of V1723 Aql span 1-37 GHz in frequency, and we report on data from 14-175 days following the time of the nova explosion. The broad frequency coverage and frequent monitoring show that the radio behavior of V1723 Aql does not follow the classic Hubble-flow model of homologous spherically expanding thermal ejecta. The spectra are always at least partially optically thin, and the flux rises on faster timescales than can be reproduced with linear expansion. Therefore, any description of the underlying physical processes must go beyond this simple picture. The unusual spectral properties and light curve evolution might be explained by multiple emitting regions or shocked material. Indeed, X-ray observations from Swift reveal that shocks are likely present.
The thermal radio emission of novae during outburst enables us to derive fundamental quantities such as the ejected mass, kinetic energy, and density profile of the ejecta. Recent observations with newly-upgraded facilities such as the VLA and e-MERLIN are just beginning to reveal the incredibly complex processes of mass ejection in novae (ejections appear to often proceed in multiple phases and over prolonged timescales). Symbiotic stars can also exhibit outbursts, which are sometimes accompanied by the expulsion of material in jets. However, unlike novae, the long-term thermal radio emission of symbiotics originates in the wind of the giant secondary star, which is irradiated by the hot white dwarf. The effect of the white dwarf on the giants wind is strongly time variable, and the physical mechanism driving these variations remains a mystery (possibilities include accretion instabilities and time-variable nuclear burning on the white dwarfs surface). The exquisite sensitivity of SKA1 will enable us to survey novae throughout the Galaxy, unveiling statistically complete populations. With SKA2 it will be possible to carry out similar studies in the Magellanic Clouds. This will enable high-quality tests of the theory behind accretion and mass loss from accreting white dwarfs, with significant implications for determining their possible role as Type Ia supernova progenitors. Observations with SKA1-MID in particular, over a broad range of frequencies, but with emphasis on the higher frequencies, will provide an unparalleled view of the physical processes driving mass ejection and resulting in the diversity of novae, whilst also determining the accretion processes and rates in symbiotic stars.