No Arabic abstract
The thermal radio emission of novae during outburst enables us to derive fundamental quantities such as the ejected mass, kinetic energy, and density profile of the ejecta. Recent observations with newly-upgraded facilities such as the VLA and e-MERLIN are just beginning to reveal the incredibly complex processes of mass ejection in novae (ejections appear to often proceed in multiple phases and over prolonged timescales). Symbiotic stars can also exhibit outbursts, which are sometimes accompanied by the expulsion of material in jets. However, unlike novae, the long-term thermal radio emission of symbiotics originates in the wind of the giant secondary star, which is irradiated by the hot white dwarf. The effect of the white dwarf on the giants wind is strongly time variable, and the physical mechanism driving these variations remains a mystery (possibilities include accretion instabilities and time-variable nuclear burning on the white dwarfs surface). The exquisite sensitivity of SKA1 will enable us to survey novae throughout the Galaxy, unveiling statistically complete populations. With SKA2 it will be possible to carry out similar studies in the Magellanic Clouds. This will enable high-quality tests of the theory behind accretion and mass loss from accreting white dwarfs, with significant implications for determining their possible role as Type Ia supernova progenitors. Observations with SKA1-MID in particular, over a broad range of frequencies, but with emphasis on the higher frequencies, will provide an unparalleled view of the physical processes driving mass ejection and resulting in the diversity of novae, whilst also determining the accretion processes and rates in symbiotic stars.
In the lead-up to the Square Kilometre Array (SKA) project, several next-generation radio telescopes and upgrades are already being built around the world. These include APERTIF (The Netherlands), ASKAP (Australia), eMERLIN (UK), VLA (USA), e-EVN (based in Europe), LOFAR (The Netherlands), Meerkat (South Africa), and the Murchison Widefield Array (MWA). Each of these new instruments has different strengths, and coordination of surveys between them can help maximise the science from each of them. A radio continuum survey is being planned on each of them with the primary science objective of understanding the formation and evolution of galaxies over cosmic time, and the cosmological parameters and large-scale structures which drive it. In pursuit of this objective, the different teams are developing a variety of new techniques, and refining existing ones. Here we describe these projects, their science goals, and the technical challenges which are being addressed to maximise the science return.
The Square Kilometre Array (SKA) will be the largest radio telescope ever built, aiming to provide collecting area larger than 1 km$^2$. The SKA will have two independent instruments, SKA-LOW comprising of dipoles organized as aperture arrays in Australia and SKA-MID comprising of dishes in South Africa. Currently the phase-1 of SKA, referred to as SKA1, is in its late design stage and construction is expected to start in 2020. Both SKA1-LOW (frequency range of 50-350 MHz) and SKA1-MID Bands 1, 2, and 5 (frequency ranges of 350-1050, 950-1760, and 4600-15300 MHz, respectively) are important for solar observations. In this paper we present SKAs unique capabilities in terms of spatial, spectral, and temporal resolution, as well as sensitivity and show that they have the potential to provide major new insights in solar physics topics of capital importance including (i) the structure and evolution of the solar corona, (ii) coronal heating, (iii) solar flare dynamics including particle acceleration and transport, (iv) the dynamics and structure of coronal mass ejections, and (v) the solar aspects of space weather. Observations of the Sun jointly with the new generation of ground-based and space-borne instruments promise unprecedented discoveries.
Fast radio bursts (FRBs) are mysterious extragalactic radio signals. Revealing their origin is one of the central foci in modern astronomy. Previous studies suggest that occurrence rates of non-repeating and repeating FRBs could be controlled by the cosmic stellar-mass density (CSMD) and star formation-rate density (CSFRD), respectively. The Square Kilometre Array (SKA) is one of the best future instruments to address this subject due to its high sensitivity and high-angular resolution. Here, we predict the number of FRBs to be detected with the SKA. In contrast to previous predictions, we estimate the detections of non-repeating and repeating FRBs separately, based on latest observational constraints on their physical properties including the spectral indices, FRB luminosity functions, and their redshift evolutions. We consider two cases of redshift evolution of FRB luminosity functions following either the CSMD or CSFRD. At $zgtrsim2$, $zgtrsim6$ and $zgtrsim10$, non-repeating FRBs will be detected with the SKA at a rate of $sim10^{4}$, $sim10^{2}$, and $sim10$ (sky$^{-1}$ day$^{-1}$), respectively, if their luminosity function follows the CSMD evolution. At $zgtrsim1$, $zgtrsim2$, and $zgtrsim4$, sources of repeating FRBs will be detected at a rate of $sim10^{3}$, $sim10^{2}$, and $lesssim10$ (sky$^{-1}$ day$^{-1}$), respectively, assuming that the redshift evolution of their luminosity function is scaled with the CSFRD. These numbers could change by about one order of magnitude depending on the assumptions on the CSMD and CSFRD. In all cases, abundant FRBs will be detected by the SKA, which will further constrain the luminosity functions and number density evolutions.
The Square Kilometre Array (SKA) will answer fundamental questions about the origin, evolution, properties, and influence of magnetic fields throughout the Universe. Magnetic fields can illuminate and influence phenomena as diverse as star formation, galactic dynamics, fast radio bursts, active galactic nuclei, large-scale structure, and Dark Matter annihilation. Preparations for the SKA are swiftly continuing worldwide, and the community is making tremendous observational progress in the field of cosmic magnetism using data from a powerful international suite of SKA pathfinder and precursor telescopes. In this contribution, we revisit community plans for magnetism research using the SKA, in the light of these recent rapid developments. We focus in particular on the impact that new radio telescope instrumentation is generating, thus advancing our understanding of key SKA magnetism science areas, as well as the new techniques that are required for processing and interpreting the data. We discuss these recent developments in the context of the ultimate scientific goals for the SKA era.
The Square Kilometre Array (SKA) is a planned large radio interferometer designed to operate over a wide range of frequencies, and with an order of magnitude greater sensitivity and survey speed than any current radio telescope. The SKA will address many important topics in astronomy, ranging from planet formation to distant galaxies. However, in this work, we consider the perspective of the SKA as a facility for studying physics. We review four areas in which the SKA is expected to make major contributions to our understanding of fundamental physics: cosmic dawn and reionisation; gravity and gravitational radiation; cosmology and dark energy; and dark matter and astroparticle physics. These discussions demonstrate that the SKA will be a spectacular physics machine, which will provide many new breakthroughs and novel insights on matter, energy and spacetime.