Do you want to publish a course? Click here

Kalman Filtering With Relays Over Wireless Fading Channels

170   0   0.0 ( 0 )
 Added by Alex Leong
 Publication date 2015
and research's language is English




Ask ChatGPT about the research

This note studies the use of relays to improve the performance of Kalman filtering over packet dropping links. Packet reception probabilities are governed by time-varying fading channel gains, and the sensor and relay transmit powers. We consider situations with multiple sensors and relays, where each relay can either forward one of the sensors measurements to the gateway/fusion center, or perform a simple linear network coding operation on some of the sensor measurements. Using an expected error covariance performance measure, we consider optimal and suboptimal methods for finding the best relay configuration, and power control problems for optimizing the Kalman filter performance. Our methods show that significant performance gains can be obtained through the use of relays, network coding and power control, with at least 30-40$%$ less power consumption for a given expected error covariance specification.



rate research

Read More

In this paper, we consider a networked control system (NCS) in which an dynamic plant system is connected to a controller via a temporally correlated wireless fading channel. We focus on communication power design at the sensor to minimize a weighted average state estimation error at the remote controller subject to an average transmit power constraint of the sensor. The power control optimization problem is formulated as an infinite horizon average cost Markov decision process (MDP). We propose a novel continuous-time perturbation approach and derive an asymptotically optimal closed-form value function for the MDP. Under this approximation, we propose a low complexity dynamic power control solution which has an event- driven control structure. We also establish technical conditions for asymptotic optimality, and sufficient conditions for NCS stability under the proposed scheme.
Wireless communications over fast fading channels are challenging, requiring either frequent channel tracking or complicated signaling schemes such as orthogonal time frequency space (OTFS) modulation. In this paper, we propose low-complexity frequency domain equalizations to combat fast fading, based on novel discrete delay-time and frequency-Doppler channel models. Exploiting the circular stripe diagonal nature of the frequency-Doppler channel matrix, we introduce low-complexity frequency domain minimum mean square error (MMSE) equalization for OTFS systems with fully resolvable Doppler spreads. We also demonstrate that the proposed MMSE equalization is applicable to conventional orthogonal frequency division multiplexing (OFDM) and single carrier frequency domain equalization (SC-FDE) systems with short signal frames and partially resolvable Doppler spreads. After generalizing the input-output data symbol relationship, we analyze the equalization performance via channel matrix eigenvalue decomposition and derive a closed-form expression for the theoretical bit-error-rate. Simulation results for OTFS, OFDM, and SC-FDE modulations verify that the proposed low-complexity frequency domain equalization methods can effectively exploit the time diversity over fast fading channels. Even with partially resolvable Doppler spread, the conventional SC-FDE can achieve performance close to OTFS, especially in fast fading channels with a dominating line-of-sight path.
Wireless communications is often subject to channel fading. Various statistical models have been proposed to capture the inherent randomness in fading, and conventional model-based receiver designs rely on accurate knowledge of this underlying distribution, which, in practice, may be complex and intractable. In this work, we propose a neural network-based symbol detection technique for downlink fading channels, which is based on the maximum a-posteriori probability (MAP) detector. To enable training on a diverse ensemble of fading realizations, we propose a federated training scheme, in which multiple users collaborate to jointly learn a universal data-driven detector, hence the name FedRec. The performance of the resulting receiver is shown to approach the MAP performance in diverse channel conditions without requiring knowledge of the fading statistics, while inducing a substantially reduced communication overhead in its training procedure compared to centralized training.
Wireless connectivity creates a computing paradigm that merges communication and inference. A basic operation in this paradigm is the one where a device offloads classification tasks to the edge servers. We term this remote classification, with a potential to enable intelligent applications. Remote classification is challenged by the finite and variable data rate of the wireless channel, which affects the capability to transfer high-dimensional features and thus limits the classification resolution. We introduce a set of metrics under the name of classification capacity that are defined as the maximum number of classes that can be discerned over a given communication channel while meeting a target classification error probability. The objective is to choose a subset of classes from a library that offers satisfactory performance over a given channel. We treat two cases of subset selection. First, a device can select the subset by pruning the class library until arriving at a subset that meets the targeted error probability while maximizing the classification capacity. Adopting a subspace data model, we prove the equivalence of classification capacity maximization to Grassmannian packing. The results show that the classification capacity grows exponentially with the instantaneous communication rate, and super-exponentially with the dimensions of each data cluster. This also holds for ergodic and outage capacities with fading if the instantaneous rate is replaced with an average rate and a fixed rate, respectively. In the second case, a device has a preference of class subset for every communication rate, which is modeled as an instance of uniformly sampling the library. Without class selection, the classification capacity and its ergodic and outage counterparts are proved to scale linearly with their corresponding communication rates instead of the exponential growth in the last case.
The fading wire-tap channel is investigated, where the source-to-destination channel and the source-to-wire-tapper channel are corrupted by multiplicative fading gain coefficients in addition to additive Gaussian noise terms. The channel state information is assumed to be known at both the transmitter and the receiver. The parallel wire-tap channel with independent subchannels is first studied, which serves as an information-theoretic model for the fading wire-tap channel. The secrecy capacity of the parallel wire-tap channel is established. This result is then specialized to give the secrecy capacity of the fading wire-tap channel, which is achieved with the source node dynamically changing the power allocation according to the channel state realization. An optimal source power allocation is obtained to achieve the secrecy capacity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا