No Arabic abstract
This is a typeset version of Alan Turings declassified Second World War paper textit{Paper on Statistics of Repetitions}. See the companion paper, textit{The Applications of Probability to Cryptography}, also available from arXiv at arXiv:1505.04714, for Editors Notes.
This is a typeset version of Alan Turings Second World War research paper textit{The Applications of Probability to Cryptography}. A companion paper textit{Paper on Statistics of Repetitions} is also available in typeset form from arXiv at arXiv:1505.04715. The original papers give a text along with figures and tables. They provide a fascinating insight into the preparation of the manuscripts, as well as the style of writing at a time when typographical errors were corrected by hand, and mathematical expression handwritten into spaces left in the text. Working with the papers in their original format provides some challenges, so they have been typeset for easier reading and access.
The ACM A.M. Turing Award is commonly acknowledged as the highest distinction in the realm of computer science. Since 1960s, it has been awarded to computer scientists who made outstanding contributions. The significance of this award is far-reaching to the laureates as well as their research teams. However, unlike the Nobel Prize that has been extensively investigated, little research has been done to explore this most important award. To this end, we propose the Turing Number (TN) index to measure how far a specific scholar is to this award. Inspired by previous works on Erdos Number and Bacon Number, this index is defined as the shortest path between a given scholar to any Turing Award Laureate. Experimental results suggest that TN can reflect the closeness of collaboration between scholars and Turing Award Laureates. With the correlation analysis between TN and metrics from the bibliometric-level and network-level, we demonstrate that TN has the potential of reflecting a scholars academic influence and reputation.
We translate the paper De Integralibus quibusdam definitis, seriebusque infinitis
We analyze the largest eigenvalue statistics of m-dependent heavy-tailed Wigner matrices as well as the associated sample covariance matrices having entry-wise regularly varying tail distributions with parameter $0<alpha<4$. Our analysis extends results in the previous literature for the corresponding random matrices with independent entries above the diagonal, by allowing for m-dependence between the entries of a given matrix. We prove that the limiting point process of extreme eigenvalues is a Poisson cluster process.
The Posner-Robinson Theorem states that for any reals $Z$ and $A$ such that $Z oplus 0 leq_mathrm{T} A$ and $0 <_mathrm{T} Z$, there exists $B$ such that $A equiv_mathrm{T} B equiv_mathrm{T} B oplus Z equiv_mathrm{T} B oplus 0$. Consequently, any nonzero Turing degree $operatorname{deg}_mathrm{T}(Z)$ is a Turing jump relative to some $B$. Here we prove the hyperarithmetical analog, based on an unpublished proof of Slaman, namely that for any reals $Z$ and $A$ such that $Z oplus mathcal{O} leq_mathrm{T} A$ and $0 <_mathrm{HYP} Z$, there exists $B$ such that $A equiv_mathrm{T} mathcal{O}^B equiv_mathrm{T} B oplus Z equiv_mathrm{T} B oplus mathcal{O}$. As an analogous consequence, any nonhyperarithmetical Turing degree $operatorname{deg}_mathrm{T}(Z)$ is a hyperjump relative to some $B$.