Do you want to publish a course? Click here

Bose-Einstein condensation and condensation of $q$-particles in equilibrium and non equilibrium thermodynamics: a new approach

246   0   0.0 ( 0 )
 Added by Francesco Fidaleo
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

In the setting of the principle of local equilibrium which asserts that the temperature is a function of the energy levels of the system, we exhibit plenty of steady states describing the condensation of free Bosons which are not in thermal equilibrium. The surprising facts are that the condensation can occur both in dimension less than 3 in configuration space, and even in excited energy levels. The investigation relative to non equilibrium suggests a new approach to the condensation, which allows an unified analysis involving also the condensation of $q$-particles, $-1leq qleq 1$, where $q=pm1$ corresponds to the Bose/Fermi alternative. For such $q$-particles, the condensation can occur only if $0<qleq1$, the case 1 corresponding to the standard Bose-Einstein condensation. In this more general approach, completely new and unexpected states exhibiting condensation phenomena naturally occur also in the usual situation of equilibrium thermodynamics. The new approach proposed in the present paper for the situation of $2^text{nd}$ quantisation of free particles, is naturally based on the theory of the Distributions, which might hopefully be extended to more general cases



rate research

Read More

We investigate formation of Bose-Einstein condensates under non-equilibrium conditions using numerical simulations of the three-dimensional Gross-Pitaevskii equation. For this, we set initial random weakly nonlinear excitations and the forcing at high wave numbers, and study propagation of the turbulent spectrum toward the low wave numbers. Our primary goal is to compare the results for the evolving spectrum with the previous results obtained for the kinetic equation of weak wave turbulence. We demonstrate existence of a regime for which good agreement with the wave turbulence results is found in terms of the main features of the previously discussed self-similar solution. In particular, we find a reasonable agreement with the low-frequency and the high-frequency power-law asymptotics of the evolving solution, including the anomalous power-law exponent $x^* approx 1.24$ for the three-dimensional waveaction spectrum. We also study the regimes of very weak turbulence, when the evolution is affected by the discreteness of the Fourier space, and the strong turbulence regime when emerging condensate modifies the wave dynamics and leads to formation of strongly nonlinear filamentary vortices.
Solid state quantum condensates can differ from other condensates, such as Helium, ultracold atomic gases, and superconductors, in that the condensing quasiparticles have relatively short lifetimes, and so, as for lasers, external pumping is required to maintain a steady state. In this chapter we present a non-equilibrium path integral approach to condensation in a dissipative environment and apply it to microcavity polaritons, driven out of equilibrium by coupling to multiple baths, describing pumping and decay. Using this, we discuss the relation between non-equilibrium polariton condensation, lasing, and equilibrium condensation.
Coherence is a defining feature of quantum condensates. These condensates are inherently multimode phenomena and in the macroscopic limit it becomes extremely difficult to resolve populations of individual modes and the coherence between them. In this work we demonstrate non-equilibrium Bose-Einstein condensation (BEC) of photons in a sculpted dye-filled microcavity, where threshold is found for $8pm 2$ photons. With this nanocondensate we are able to measure occupancies and coherences of individual energy levels of the bosonic field. Coherence of individual modes generally increases with increasing photon number, but at the breakdown of thermal equilibrium we observe multimode-condensation phase transitions wherein coherence unexpectedly decreases with increasing population, suggesting that the photons show strong inter-mode phase or number correlations despite the absence of a direct nonlinearity. Experiments are well-matched to a detailed non-equilibrium model. We find that microlaser and Bose-Einstein statistics each describe complementary parts of our data and are limits of our model in appropriate regimes, which informs the debate on the differences between the two.
Using a specially tuned mean-field Bose gas as a reference system, we establish a positive lower bound on the condensate density for continuous Bose systems with superstable two-body interactions and a finite gap in the one-particle excitations spectrum, i.e. we prove for the first time standard homogeneous Bose-Einstein condensation for such interacting systems.
We review the practical conditions required to achieve a non-equilibrium BEC driven by quantum dynamics in a system comprising a microcavity field mode and a distribution of localised two-level systems driven to a step-like population inversion profile. A candidate system based on eight 3.8nm layers of In(0.23)Ga(0.77)As in GaAs shows promising characteristics with regard to the total dipole strength which can be coupled to the field mode.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا